Yahoo! Query Language (YQL) Guide

Yahoo! Query Language (YQL) Guide

Abstract

This guide provides an overview of Yahoo! Query Language (YQL) along with information on how to use YQL to
retrieve data from Yahoo! Social Directory, MyBlogLog, and data from other Yahoo! Web services. YQL also allows
you to retrieve data from external sources such as the New York Times as well as feeds such as RSS and Atom.

This guide is intended for software developers who are familiar with SQL, MySQL, or Yahoo! Pipes.

Looking for more docs? See the Y!0S Documentation® landing page.

We welcome your feedback. Have a comment or question about this document? Let us know in the YDN Forum for
Y!0S Documentation?.

lyos
http://developer.yahoo.net/forum/index.php?showforum=64

N, I

/yos
http://developer.yahoo.net/forum/index.php?showforum=64
http://developer.yahoo.net/forum/index.php?showforum=64
/yos
http://developer.yahoo.net/forum/index.php?showforum=64

Table of Contents

1 INErOAUCTNG Y QL ettt ettt ettt et 1
INEFOTUCTION ...ttt et 1
2. YQL LaNQUAGE OVEIVIEWc.vuieeiiiie ettt ettt ettt et e e e e eaaens 2
YQL LANQUAGE OVEIVIEWciiiiiieeiitt ettt ettt ettt ettt e ettt e ettt e e et e e eeae e eenes 2
DOE-SEYIE SYNEAX ... eeeitt ettt et et et 2

3. USING YQL STAIEMENTS ... eeitiieeeiii ettt ettt ettt e et e e e 4
Public and Private YQL TabIeSoeuiiiiiii e e 4
Data Sets Available through YQLiiiiiiii e 4
HOW YOQL TreAtS DAceuieiiiieiteiie ettt et et e e e 4
Extending and Customizing Y QLuuuiiiiiiiiiiiie et 5

Basic SELECT and FROM SEAteMENTSc.uuuuiiiiiiiieiiii ettt 5
Handling One-to-Many RelationsShipsoooiiiiiiiiiiii e 6

Local and ReMOLE FIlEEIINGooiiiiiiiiii e 7
SUB-SEIECES ..ot e 8
Paging and Limiting Table Size ... 8
LOCAE CONLIOL ..t et 8
REMOLE CONTIOL ...ttt 9
UNDOUNTEA QUETIES ...ttt et ettt e e e e e e eees 9
SOCIAl Data aNG M ...t 9
Post-Query Filtering and Manipulationcooiiiiiiiiiii e 9
DESC SEAIEMENT ...ttt e et e 10
SHOW STBEEMENT ...ttt e e 10
4. RUNNING Y QL STALEIMENTS ... ittt ettt e e 11
Options for RUNNING Y QL SEAtEMENTSoovuiiiiiiiieeiei e 11
Y QL QUEKY ParGMELELS ...ttt ettt et e e et ettt ettt e et et e e b eanas 11
YQL RESUIL STFUCLUIE .. et e e e e eeens 11
SELECT diagnostiCs EIEMENTiiiiiiiiiii e 12
Output: XML t0 JSON CONVEISIONciieiiieeiiii ettt ettt 12
OULPUL: EITOr REPOITING ..evvt ittt ettt e et e e e e eeees 13
Trying YQL: The TeSting CONSOIEccouuuiiiiiii e 13
YQL via PHP or Yahoo! Open AppliCationscovvuiiiiiiiiieii e 13
Yahoo! Open Application JAVASCIIPLcovuriieiiiii e 14
2-Leg0ed OAULN L.t 15
From Other Languages and ENVIFONMENTSiiiiiiiiiiiiiieeii e 17
Authorization and AcCeSS CONIOLco.uuiiiiii e 17
ACCESSING YQL PUDIIC DALAcevvviieiiiieee e 17
Accessing YQL using 2-Legged OAULN ..ot 17
3-Legged OAULh ACCESS T0 YQL ...iiiiiiiiiii e 17

5. Using YQL Open Data Tables (BETA)iiiiiiiiiiii et 18
Overview of Open Data TADIESc...uuiiiiii e 18
Invoking an Open Data Table Definition Within YQLccooiiiiiiiiiiii e 18
Open Data TableS RETEIENCE it e 19
TADIES BIEMENT ..o e 19

Meta SUD-BIEMENT ...t 20
SEIECE SUD-IEMENT ... 21
SEleCt/UrlS SUD-EIEMENTt 21
Select/execute SUD-EIEMENTcou e 22

KEY SUD-BIEIMENT ...t e 22
select/paging SUD-EIEMENT oo 24
Paging/pagesize SUD-EIEMENTciiiii e 24
Paging/start SUD-EIEMENT i 24

Yahoo! Developer Network iii April 28, 2009

Yahoo! Query Language (YQL) Guide

paging/total sUb-elEMENLo 25
Open Data Table EXAMPIEScovviiii e 25
FIICKE PROTO SEAICH ..vtiiii e e e 25

Digg EVENES VIA GNP ..ovvniiiieci e e e e e e a e 27
Twitter User TIMElINGiiiii e 27
Open Data Tables Security and Access CONIolc..oviiiiiiiiiiiiiin e 28
Batching Multiple Calls into a Single REQUESTiivviiiiiii e 29
TrOUBIESNOOTING ...vviiit e e e 29
6. Executing JavaScript in Open Data Tables (BETA)covuiiiiiiiiicieeee e 31
Ty go o (1T 1 To] o R RPPRN 31
Features and BenETitS ciiiui e 31
Ensuring the Security of Private INformationcccooeiiiiiiiiii i, 31
JavaScript Objects and Methods ReferenCec..oviiiiiiiiii i 32
Y Global OBJECE ..o 32
request GIobal ODJECEiii i 35
response Global OBJECEccvvii i 35
JavaScript and E4X Best Practices for YOQLccovviiiiiiiiiii e ea e 35
Paging RESUILSiiitiii e e e 35
Including Useful JavaScript LIBrariesc.coveviiiiiiiiiiii e 36
UsiNg EAX WIthiN Y QL ... e e e 36
Logging and DEBUGGINGcvvneiiieii e e e e e e e e e 38
Examples of Open Data Tables with JavaScriptcccoiiiiiiiiiii e, 39
HEHO WOTTA Tableovieie e e e 39
YahoOo! MESSENQEE STALUSvvvneeii it e e e e e e e e e e e e e e e e 40
OAuth Signed Request t0 NEtfliXcoovuiiiiiiiii e, 41
Request for a FIICKr "frob™ ... 42
Celebrity Birthday Search using IMDBcooiiiiiiiii e 43
Shared Yahoo! APPlCALIONSiiiiiiiiici e 47

CSS SeleCtor FOr HTIMIL ...t 49
EXECULION RALE LIMILS .. oevutieiiii et e e et e et e aeaen s 50

Yahoo! Developer Network iv April 28, 2009

List of Tables

3.1, POST-reSUIT OPEIALIONS ...t eeeiii ettt ettt et ettt e e e e e 10

Yahoo! Developer Network % April 28, 2009

Chapter 1. Introducing YOQL

Introduction

Yahoo! makes a lot of structured data available to developers through its Web services, like Flickr and
Local, and through other sources like RSS (news) or CSV documents (finance). There are also humerous
external Web services and APIs outside of Yahoo! that provide valuable data. These disparate services
require developers to locate the right URLSs for accessing them and the documentation for querying them.
Data remains isolated and separated, requiring developers to combine and work on the data once it's returned
to them.

The YQL platform provides a mediator service that enables developers to query, filter, and combine data
across Yahoo! and beyond. YQL exposes a SQL-like SELECT syntax that is both familiar to developers
and expressive enough for getting the right data. Through the SHOW and DESC commands we attempt
to make YQL self-documenting, enabling developers to discover the available data sources and structure
without opening another web browser or reading a manual.

The YQL Web Service exposes two URLSs that are compiled for each query:

The first URL allows you to access both private and public data using OAuth authorization [17]:
http://query.yahooapis.com/v1/yql?g=[command]

If you simply want access to public data, YQL provides a public URL that require no authorization and is
wide open:

http://query.yahooapis.com/v1l/public/yql?qg=[command]

Note

The public URL has stricter rate limiting, so if you plan to use YQL heavily, we recommend
you access the OAuth-protected URL.

We analyse the query to determine how to factor it across one or more web services. As much of the query
as possible is reworked into web service REST calls, and the remaining aspects are performed the YQL
service itself.

Yahoo! Developer Network 1 April 28, 2009

Chapter 2. YQL Language Overview

YQL Language Overview

Y QL supports three SQL-like verbs:

» SELECT for fetching, combining, filtering and projecting data.

» DESC for describing the input fields for a table and its output data structure.

» SHOW for getting a list of the tables/data sources supported by the language/platform.

In addition, YQL also supports several POST-query functions like sort and unique.

The SELECT statement is the primary verb for YQL and borrows much from a SQL-like syntax:
SELECT what FROM table WHERE filter

The "tables" refer to external (to YQL) data sources which contains (possibly very large) collections of
structured data.

All data in YQL is hierarchically structured as XML data sources. If the underlying table source does not
provide XML, it is converted into an XML-like representation.

Most data tables, or sources, in YQL require one or more "input"” fields to be specified in the filter portion
of a SELECT statement when using that table in the FROM clause. These fields may or may not appear
in the output of the query, depending on the table data source. All fields appearing in the output can be
filtered and projected using standard boolean operations and compar ators.

Any table or data source can be joined with another data source through sub-selects as long as each table
has a matching value, similar to a foreign key.

Dot-style syntax

Both the projection and (local) filtering parts of YQL use a "dot" style syntax for specifying which fields
of the data structure to return and filter. Each "dot" in a field path refers to the name of the element (for
JSON and XML documents) or an attribute or cdata/text portion of the element (for XML documents)
(only for thelast part of the dot path)

The more "dots™ in a path, the deeper into the data structure the final element is found.
Examples

<doc>
<a>aval
<sub><subsub>subsubval</subsub>
<c cat="atval''>cval</c>

</doc>

Dot syntax and the values they return:

doc.a = aval
doc.b.sub.subsub = subsubval

Yahoo! Developer Network 2 April 28, 2009

YQL Language Overview

doc.c.cat = atval
doc.c = atval,cval

XML namespace handling

Many XML documents contain different namespaces. The dot syntax will treat each "dot" part of the path
as a wildcard namespace match. Consider:

<doc>
<ans:a>aval</ans:a>
<bns:b>_{bval}</bns:b>
</doc>

Dot syntax and the values they return:

doc.a = aval
doc.b.sub = bval;

Yahoo! Developer Network 3 April 28, 2009

Chapter 3. Using YQL Statements
Public and Private YQL Tables

The YQL Web Service exposes two URLS that are compiled for each query:

The first URL allows you to access both private and public data using OAuth authorization [17]:
http://query.yahooapis.com/v1/yql?g=[command]

If you simply want access to public data [4], YQL provides a public URL that require no authorization
and is wide open:

http://query.yahooapis.com/v1/public/yql?g=[command]
Note

The public URL has stricter rate limiting, so if you plan to use YQL heavily, we recommend
you access the OAuth-protected URL.

We analyse the query to determine how to factor it across one or more web services. As much of the query
as possible is reworked into web service REST calls, and the remaining aspects are performed the YQL
service itself.

Data Sets Available through YQL

YQL provides structured XML or JSON data with repeating elements, such as a list of restaurants or search
results. YQL provides a default set of these items (weather, search, and social information, among others)
presented as "tables" in the YQL syntax, and are notionally namespaced based on the service providing
the data.

To see the current list of tables available by default through YQL, you can run the "show tables" query on

the YQL console?.
Note

Yahoo!'s Social APIs are not publicly callable and require 2-legged OAuth authorization [4].

How YQL Treats Data

Each item in these collections is treated in YQL in the same way a "row" is treated with SQL, except each
of these "rows" is a discrete hierarchical data fragment.

Some tables refer to external data sources: FEED, RSS, ATOM, JSON, HTML, XML and CSV. In the
FEED, RSS and ATOM cases, YQL attempts to turn the document into a repeating set of items by choosing
which element path points to the item. With XML, JSON, and CSV, YQL needs the developer to tell it
explicitly what the repeating "row" elements of the data is called. Any information outside of these repeated
elements is discarded by YQL (for example the channel value of an RSS feed). In some situations, it may
be impossible, or undesirable, to decompose a data structure into sub-items for processing. Many of the

1 http://developer.yahoo.com/ygl/console/2g=show%20tables

Yahoo! Developer Network 4 April 28, 2009

http://developer.yahoo.com/yql/console/?q=show%20tables
http://developer.yahoo.com/yql/console/?q=show%20tables
http://developer.yahoo.com/yql/console/?q=show%20tables

Using YQL Statements

tables in YQL, such as the external data tables, enable the developer to override the default item sets chosen
for the source using the itemPath key.

Extending and Customizing YQL

In addition to the existing tables available, YQL also allows you add support for third-party tables, with
the potential to support countless Web services and APIs. By creating your own XML-based definition
file, you can extend YQL to support your own set of data. For more information on extending YQL to
support third-party tables, refer to Using YQL Open Data Tables. [18]

Basic SELECT and FROM Statements

The SELECT statement allows you to determine what information you want to retrieve from from table
data, including any parent parts of the structure that are necessary. Each dot style path included in the
comma seperated list selects a sub-tree to return FOR EACH item in the table.

 project will NOT return empty items. If project does not produce a valid fragment of XML it is dropped
from the results. Consequently: SELECT * from local.search(100) WHERE text =
"pizza" will return 100 items, but SELECT foo from local.search(100) WHERE text
= ""pizza" will returns 0 items, since "foo" is not a member of any of the local search items.

* LIMIT and OFFSET happen after the project.

» The dot syntax does not perform "best effort” when extracting parts of the tree. It requires a complete
path match to return anything

 Our dot-based syntax considers attributes and cdata/text to logically be leaves on a tree.
» Only fully complete paths to leaf nodes in the dot notation are returned.

« Failure to match to the leaf (existence not content) results in no match/nothing projected.
e _*isnot required to get all of a nodes sub-structure (and therefore ignored as a leaf).

» XML namespaces/namespace prefixes are ignored.

» Completing a walk sucessfully on a node selects all sub-nodes under that node.
Consider the following XML document:

<doc docatt="b" docatt2="c" attcollide="d">
<el>boo</el>
<el2>boo2</el2>
<attcollide>e</attcollide>
<ctest>
<sub att2="ald" />
blah blah
</ctest>
</doc>

doc.dog = <NULL>
doc.ctest.dubsub = <NULL>
doc.docatt = <doc docatt=b></doc>

Yahoo! Developer Network 5 April 28, 2009

Using YQL Statements

doc.el = <doc><el>boo</el></doc>

doc.attcollide = <doc attcollide="d"><attcollide>e</attcollide></doc>
doc.ctest = <doc><ctest><sub att2="ald"™ />blah blah</ctest></doc>
doc.ctest.sub = <doc><ctest><sub att2="ald" /></ctest></doc>

Although the examples show the root element as part of the dot path, the root element for each item should
not be present on the path as YQL assumes that the path is starting on the elements sub-structure. Thus
result.aand a are not the same (and result.a is probably incorrect).

Handling One-to-Many Relationships

Many XML documents contain one-to-many relationships. For example in the following example, the
"item" has a one-to-many relation with the "category" element.

<item>
<title>Tomcat</title>
<category>java</category>
<category>AppServer</category>
</item>

Dot paths may sometimes refer to these one-to-many/array elements rather than distinct single leaves. YQL
handles these type of dot paths differently depending where they appear in the SELECT expression.

In the WHERE clause YQL will evaluate a relational expression as true if the field's value matches any of
the repeating arrayed elements. Thus WHERE category="java" will test every "category" element
looking for a match. There is currently no support for addressing a specific offset or particular element in
these cases

In the project clause, YQL makes any one-to-many relations being projected in an xml document look like
a "set" of one to one-to-one relations by creating a cross product of the items that it comes across. Thus,
select category from item inthe above example will result in the following items:

<item>
<title>Tomcat</title>
<category>java</category>
</item>

<item>
<title>Tomcat</title>
<category>AppServer</category>
</item>

If multiple one-to-many elements are referenced, then the full cross product XML documents across all
of the permutations is produced. For example, consider the following document with both "tag™ and "cat-
egory" being one-to-many:

<item>
<title>Tomcat</title>
<tag>Tomcat</tag>
<tag>Server</tag>
<category>java</category>

Yahoo! Developer Network 6 April 28, 2009

Using YQL Statements

<category>AppServer</category>
</item>

select title, tag, category from item where category="java" would produce
all the combinations of tag x category, and then filter them by only those with category = "java":

<item>
<title>Tomcat</title>
<tag>Server</tag>
<category>java</category>
</item>

<item>
<title>Tomcat</title>
<tag>Tomcat</tag>
<category>java</category>
</item>

Local and Remote Filtering

YQL provides access to a wide range of diverse web services and data sets. Many of these web services
provide mechanisms (typically GET query parameters) to filter the results based on some criteria. For ex-
ample, Yahoo!'s local web service can use a "zipCode" parameter to only give local search results in a
given zip code. Many services do not return data unless one or more of these parameters is provided.

YQL enables developers to filter the data remotely by exposing these input parameters in the WHERE part
of the YQL query. Developers can find out what parameters are necessary or optional by DESCribing the
table, which returns the list of these input fields. Only equality operations are supported on these "input"
fields, and the field names often do not correspond directly to the elements of the output data from the
table.

In contrast, YQL's local filtering, which operates on the table output, works with any part of the returned
data, identified using a "dot" style syntax for the left hand side of an expression, an operand, below, and
a literal right hand side. Operands include:

» LIKE: Uses standard SQL syntax for substring pattern matching (starts with, ends with, or contains).
* IS NULL: Is true if the field does not exist in the document.

IS NOT NULL: Is true if the field exists in the document.

Yahoo! Developer Network 7 April 28, 2009

Using YQL Statements

The right hand side of any expression is assumed to be a literal string or number (integer or float). (Note:
Date types and other string operations are not currently supported).

Multiple local and remote filter expressions can be combined using the standard boolean operators:
e AND
e OR

AND has more precedence than OR when evaluating the filter statements. If the developer needs to change
the precedence of the filter evaluation, then parenthesis can be used to group expressions.

Sub-Selects

In addition to local and remote filtering, Y QL supports sub-selects to join data across different tables/sources.
The "key" used to join is a field in the outer select (either a local field in the actual response data or a remote
key input field to the table). A sub-select can only return a single "leaf" value in the data structure.

SELECT * FROM social .profile WHERE guid
IN (SELECT guid FROM social.connections WHERE owner_guid=me)

To manage the number of network calls, only one input key IN() is allowed per "and". For example, if text
and city are both input keys for the local.search table, and address.state is part of the XML response:

SELECT * FROM local.search WHERE text IN
(SELECT foo FROM bar) OR city IN (SELECT cat FROM dog)

Illegal:

SELECT * FROM local .search WHERE text IN (SELECT foo FROM bar) and city
IN (SELECT cat FROM dog)

Paging and Limiting Table Size

Many YQL queries access data sources with thousands or miliions of entries. To manage large remote set
sizes returned by a query YQL allows developers to control paging and data source sizes at two levels.

Local Control

By default, returns all items from a query. Developers can choose to change the number of results returned
through LIMIT. For example:

SELECT * from web.search WHERE query="madonna' LIMIT 3

This returns the first 3 results from the web.search table's "madonna” results.

Similarly, OFFSET may be used to change the starting item:

SELECT * from web.search WHERE query="madonna' LIMIT 3 OFFSET 10
This returns the results 10-13 from the set of data in the madonna query on web.search.

LIMITs and OFFSETS allow the developer to select any "slice” of data they want from the results of the
YQL query. LIMIT must appear before OFFSET in the YQL syntax.

Yahoo! Developer Network 8 April 28, 2009

Using YQL Statements

Remote Control

By default, YQL tables only expose a subset of the potential number of actual entries contained within a
source web service. For example, web.search has millions of entries when queried with "madonna”. If the
developer then provides a filter operation not supported by that service then YQL would have to keep
fetching data from the web service until the LIMIT of the YQL query was reached (or the query times
out). Each table in YQL therefore has a maximum set size that will be operated on locally. This size is
tuned for each table, typically the web services default page size, and can be found by "desc [table]".

Developers can change the maximum set size through two parameters appended to the table declaration:

SELECT * from web.search(0,10) WHERE query="madonna’™ AND
result.XXX=something

or

SELECT * from web.search(1000) WHERE query="madonna’ AND
result.XXX=something

Unbounded queries

When the LIMIT parameter is greater than the maximum set size (either default or specified in the query)
it will never be reached - there simply aren't enough table entries to satisfy the LIMIT. However, there are
situations where the developer is prepared to wait for the number of results. In these situations developers
may remove the table size control from the query. For example:

SELECT * from web.search(0) WHERE query="madonna’™ AND
result._XXX=something

This causes the YQL engine to keep fetching data from web.search until the YQL query LIMIT is satisfied
(or the set is exhausted, or 50000 items are processed). This may produce timeouts and other error conditions,
depending on what percentage of data results from the remote data table pass the local filter.

Social Data and Me

YOS provides a single aggregate social network. This information is made available through the social.*
tables. One of the key aspects of any social network is knowing who "you" are, and in YOS you are iden-
tified using a "guid". The guid is a unique string that can be used in the social network to access your data
and friends. YQL provides a special literal, me, which can conveniently be placed on the right hand side
of any equals or not equals expression:

SELECT * FROM social.profiles WHERE guid = me

This returns the currently authenticated user's profile information. If "me" is used without any user authen-
tication an error is returned.

Post-Query Filtering and Manipulation

The main SELECT statement in YQL allows a developer to control what data is fetched or combined from
a variety of sources. This data may be large and require paging (using OFFSET and LIMIT). YQL provides
an additional set of POST-result operations that operate on the results of the SELECT statement:

Yahoo! Developer Network 9 April 28, 2009

Using YQL Statements

Table 3.1. POST-result Operations

Function|Arg Name|Arg sorting Description

sort field descending |Sorts the result set according to the field (string)

tail count - Gives the last [count] items in the list

truncate |count - Gives the first [count] in the list

reverse |- - Reverses the order of the items in the result.

unique |field - Remaoves any result items that have duplicate field values. The first

field with that value remains in the results.

Each operation can be applied by appending a | and the operation to the end of the first YQL statement.
The following query for the top 10 pizza restaurants in New York sorts the results of the YQL select
statement before the results are returned:

SELECT Title, Rating.AverageRating FROM local.search(10) WHERE

query=""pizza"

AND city="New York'™ AND state="NY" | sort(field="Rating.AverageRating)
| reverse(Q)

Note
L EF

This only sorts the particular set of data returned from the YQL statement (10 items), not the
whole local.search set itself (10000+ items).

Tip

POST-YQL query filtering can also be performed within a sub-select.

DESC Statement

DESC returns information about a particular table in YQL. for example:

DESC social .profile

The response lists possible input keys that the table requires (or are optional) before data can be operated
on locally by YQL. It also shows the structure of each item in the XML data collection which will be returned
by that table. This enables developers to quickly determine what keys and structures are available to them
through YQL, without consulting external documentation.

SHOW Statement

SHOW accepts one value: tables. For example:
SHOW tables

This returns a list of tables that the user can use in the SELECT statement, or DESC to get more information
about the table.

Yahoo! Developer Network 10 April 28, 2009

Chapter 4. Running YQL Statements
Options for Running YQL Statements

QThere are two ways of running YQL statements:

* as a user through the YQL console [13]

 from developer code calling a GET request to http://query.yahooapis.com

YQL Query Parameters

The base path looks like this: http://query.yahooapis.com/v1/yql?[query params]

Parameter |Required?|Default For mat Description

q yes - The YQL command to execute, one of SELECT, DESC or
SHOW.

format no xml Determines how the results from the YQL statement are
formatted, either JSON or XML.

callback |no empty If JSON is specified as the output type, the value of this para-
meter is the function name used to wrap the JSON result.

diagnostics |no true Diagnostics will be returned with response unless this is set to
false.

In addition to these query parameters developers need to provide a valid OAuth authorization header (see
below).

YQL queries will run for a maximum of 30 seconds before being aborted. Individual queries to table source
providers will time out after 4 seconds.

YQL Result Structure

Data is returned in either JSON or XML (depending the output query parameter value), regardless of the
data format used by the table providers in the YQL statement. All queries (SELECT, DESC etc) return the
following envelope:

<?xml version="1.0" encoding=""UTF-8"7>
<query xmlns:yahoo="http://www.yahooapis.com/v1l/base.rng"
yahoo:count="7"
yahoo:created="2008-08-21T11:39:13Z2"
yahoo: lang=""en-US"
yahoo:updated=""2008-08-21T11:39:13Z2""
yahoo:uri="http://a.b.c/abc">
<results>

. .response content body...

</results>

Yahoo! Developer Network 11 April 28, 2009

Running YQL Statements

</query>

The query element has the following attributes:

Attribute

Description

count

The number of items in the response content from the table. This should be less than or equal
to the LIMIT for the query.

created

RESTful parameter for when this response set was created.

lang

The locale for the response.

updated

RESTful parameter for when this response set was created.

uri

The URI where the same set of results can be retrieved. Should be the same as the URI actually
being used to run the statement.

The response content body structure contains the result of the query itself, and differs depending on the
YQL statement.

SELECT diagnostics element

The data returned from the tables in the query is returned within the results element. In addition to the
results a diagnostics element provides a variety of information about how YQL decomposed the SELECT
statement, what network calls were made on the developers behalf, and how long they took:

<diagnostics>

<url

execution-time=""193">http://abc.yahoo . con/v1/user/asad/connections;count=10</ur 1>

<query-time>226</query-time>

</diagnhostics>

Output: XML to JSON Conversion

YQL's JSON output transforms XML data in a way that's easy to use for JSON consumers. As such, it is
lossy (for example you cannot transform the same JSON structure back to the original XML).

These are the rules used for transforming:

« Attributes are mapped to name:value pairs

» Element CDATA or text sections are mapped to a ""content":value pair | F the element contains attributes
or sub-elements, otherwise they are mapped to the element name's value directly.

* Namespace prefixes are removed from "name"s.

« If attribute, element, or namespace-less element would result in the same key name being created in the
JSON structure, an array will be created instead.

For example, consider the following XML:

<doc yahoo:count=10>
<ns:a>avalue</ns:a>
<subb>bvalue</subb>

Yahoo! Developer Network 12 April 28, 2009

Running YQL Statements

<c count=20 yahoo:count=30>
<count>40</count>
<count><subcount>10</subcount></count>
</c>
<d att="cat''>dog</d>
</doc>

This will be transformed to the following JSON structure:

{doc: {
=count:10,
a:"avalue™,
b: { subb: "bvalue'},
c: { count: [20,30,40,{subcount:10}] },
d: { att:"cat", content:'"dog" }

i3

Output: Error Reporting

Errors in both syntax and execution will return a 400 HTTP response code. YQL attempts to run in a "best-
effort” manner. Therefore non-fatal errors may return no data but will nevertheless return a 200 response
code. In addition, information about the error is returned in an error element:

<?xml version="1.0" encoding="UTF-8"7>

<error xmlns:yahoo="http://www.yahooapis.com/v1l/base.rng"
yahoo: lang=""en-US">
<description>Cannot find required keys in where clause; got "",
expecting required keys :(guid)</description>
</error>

Trying YQL: The Testing Console

YQL

The test console is a single web page that developers can use to explore the YQL data tables, create and
test out new queries, and try example queries.

The console can be found here:

http://developer.yahoo.com/ygl/console/

via PHP or Yahoo! Open Applications

Install the _Yahoo! Social API PHP SDKY. After installing you can easily make YQL requests using the
$session->query() method. For example:

<?php

/**

This example demonstrates the Social SDK and
creating a new session and using YQL to request
the users profile information

1 http://developer.yahoo.com/social/sdk

Yahoo! Developer Network 13 April 28, 2009

http://developer.yahoo.com/yql/console/
http://developer.yahoo.com/social/sdk
http://developer.yahoo.com/social/sdk

Running YQL Statements

*/

// Include the YOS library.
require(*'Yahoo.inc™);

// define your consumer key
$consumerkey = "*';

// define your consumer key secret
$consumerKeySecret = "*';

// define your application ID
$applicationld = "";

// Don"t have an app set up yet?
// Sign up for one here:
// https://developer.yahoo.com/dashboard/createKey.html

$session = YahooSession: :requireSession($consumerKey, $consumerKeySecret,

$applicationld);
$rsp = $session->query('select * from social.profile where guid=me');

// print the result.
$results = $rsp->query->results;
echo print_html($results);

function print_html($object) {
return str_replace(array(" ", \n"), array(C' ", "
"),
htmlentities(print_r($object, true), ENT_COMPAT, "UTF-8"));
}

?>

Yahoo! Open Application Javascript

For client-side only usage, the Yahoo! Open Application Platform automatically signs io.makeRequest
calls to query.yahooapis.com using your applications OAuth scope. This enables developers to
seamlessly and securely invoke YQL directly from the client-side. For example:

<script type="text/javascript'>

/**

This example demonstrates using OAuth
to manually sign a request to YQL
using OpenSocial.

*/

(function() {

var toQueryString = function(obj) {
var parts = [];
for(var each in obj) if (obj.-hasOwnProperty(each)) {
parts.push(encodeURIComponent(each) + "= +

Yahoo! Developer Network 14 April 28, 2009

Running YQL Statements

encodeURIComponent(obj[each]));
}
return parts._join("&");

¥

var BASE_URI “http://query.yahooapis.com/v1/yql "~ ;
var runQuery = function(query, handler) {
gadgets. 10.makeRequest(BASE_URI, handler, {
METHOD: ®POST",
POST_DATA: toQueryString({q: query, format: "json"}),
CONTENT_TYPE: “JSON-",
AUTHORIZATION: “OAuth*

DE

¥

runQuery('select * from geo.places where text="SFO"', function(rsp) {
document.getElementByld(" results®™).innerHTML =

gadgets. json.stringify(rsp.data);

P:

PO;

</script>

<div 1d=""results'"></div>

2-Legged OAuth

The following PHP example uses 2-legged OAuth to return the name, centroid, and WOEID for the Van-
couver International Airport using the GeoPlanet tables present in YQL.

<?php
/**
This example demonstrates using OAuth
to manually sign a request to YQL in PHP
*/

// include OAuth code
require("'OCAuth.php');

// define your consumer key
$consumerkey = "'';

// define your consumer key secret
$consumerSecret = "'*';

// Don"t have an app set up yet?
// Sign up for one here:
// https://developer.yahoo.com/dashboard/createKey.html

// make the request to YQL
$data = ygl_query(*'select name,centroid,woeid from geo.places where
text=\"YVR\""");

Yahoo! Developer Network 15 April 28, 2009

Running YQL Statements

// print the result.
$results = $data->query->results;
echo print_html($results);

function yql_query($query)
{

global $consumerKey, $consumerSecret;

// define the base URL to the YQL web-service
$base_url = "http://query.yahooapis.com/v1l/yql";

// create arguments to sign.
$args = array(Q;

$args[q™] = $query;
$args[''format™] = "json";

// passing the key and secret strings to define our consumer.
$consumer = new OAuthConsumer($consumerKey, $consumerSecret);

// build and sign the request

$request = OAuthRequest: : from_consumer_and_token($consumer, NULL,
“"GET', $base url, $args);

$request->sign_request(new OAuthSignatureMethod HMAC SHA1(), $consumer,
NULL) ;

// Tinally create the URL
$url = sprintf("%s?%s", $base_url,
oauth_http_build_query($args));

// and the OAuth Authorization header
$headers = array($request->to_header());

$ch = curl_init(Q);

curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$rsp = curl_exec($ch);

// since we requested JSON we"ll decode it
// and return the data as a PHP object
return json_decode($rsp);

}

function print_html($object) {
return str_replace(array(" *, \n"), array(C' ", "
"),
htmlentities(print_r($object, true), ENT_COMPAT, "UTF-8"));
}

function oauth_http build_query($parameters) {
$strings = array(Q);
foreach($parameters as $name => $value) {

Yahoo! Developer Network 16 April 28, 2009

Running YQL Statements

$strings[] = sprintf("%s=%s", rawurlencode($name),
rawurlencode($value));

}
$query = implode('&", $strings);
return $query;

}

?>

From Other Languages and Environments

In general, any standard OAuth library will work for signing requests to YQL. Some libraries encode
spaces to + (plus sign), others to %20. Yahoo! currently requires spaces to be encoded as %20 and * (asterisk
symbol) to be encoded as %2A.

Authorization and Access Control

OAuth Authorization for YQL depends on whether you want access to public or private tables.

Accessing YQL Public Data

For access to public data, no authorization is required if you use the public URI:
http://query.yahooapis.com/v1l/public/yql?qg=[query]
Note
£

Access to the public URI has as lower rate limit than the normal YQL URI.

Accessing YQL using 2-Legged OAuth

If you want access to public data with higher rate limits, you must sign your requests using the OAuth
service. YQL accepts 2 and 3-legged OAuth 1.1 authentication headers at query.yahooap-
is.com/v1/yql.

3-Legged OAuth Access to YQL

YQL does not grant any additional capabilities to the OAuth scope presented. Thus, if a developer needs
access to private data, such as read permission for the user's social updates, the application must provide
and sign the request with a 3-legged OAuth token with that scope.

Yahoo! Developer Network 17 April 28, 2009

(Céréaa)ter 5. Using YQL Open Data Tables

The following section is a documentation preview. It is meant to provide a preliminary glimpse of general features,
usage, and specifications. Details may be incomplete and are subject to change.

Overview of Open Data Tables

YQL contains an extensive list of built-in tables [4] for you to use that cover a wide range of Yahoo!
Web services and access to off-network data. Open Data Tables in YQL allow you to create and use your
own table definitions, enabling YQL to bind to any data source through the SQL-like syntax and fetch
data. Once created anyone can use these definitions in YQL.

An Open Data Table definition is an XML file that contains information as you define it, including, but
not limited to the following:

» Authentication and Security Options: The kind of authentication you require for requests coming into
your service. Also, whether you require incoming connections to YQL be made over a secure socket
layer (via HTTPS).

» Sample Query: A sample query that developers can run via YQL to get information back from this
connection.

* YQL Data Structure: Instructions on how YQL should create URLS that access the data available from
your Web service. Also, an Open Data Table definition provides YQL with the URL location of your
Web service along with the individual query parameters (keys) available to YQL.

» Pagination Options: How YQL should "page" through results. If your service can provide staggered
results, paging will allow YQL to limit the amount of data returned.

Invoking an Open Data Table Definition within
YQL

If you want to access external data that is not provided through the standard YQL set of tables (accessible
through the show tables query), YQL provides the use statement when you want to import external
tables defined through your Open Data Table definition.

External data can be accessed in the following manner:

USE "*http://myserver.com/mytables.xml™ AS mytable;
SELECT * FROM mytable WHERE. ..

In the above query, USE precedes the location of the Open Data Table definition, which is then followed
by AS and the table as defined within your Open Data Table definition. After the semicolon, the query is
formed as would be any other YQL query. YQL fetches the URL above and makes it available as a table
named mytable in the current request scope. The statements following use can then select or describe
the particular table using the name mytable.

You can also specify multiple Open Data Tables by using multiple USE statements in the following manner:

Yahoo! Developer Network 18 April 28, 2009

Using YQL Open Data Tables (BETA)

USE *"*http://myserver.com/mytablesl.xml* as tablel;
USE *"*http://myserver.com/mytables2.xml" as table2;
SELECT * FROM tablel WHERE id IN (select id FROM table2)

Open Data Tables Reference

The following reference describes the structure of an Open Data Table definition:

The following elements and sub-elements of YQL Open Data Tables are discussed in this reference:

» Examples

* tables [19]
* meta [20]
* bindings
o select [21]
o urls
* urls [21]
* inputs
* key [22]
* paging [24]
* pagesize [24]
* start [24]
* total [25]

tables element

Full Path: root element

Example:

<table xmlns="http://query.yahooapis.com/vl/schema/table.xsd">

This is the root element for the document. A table is the level at which an end-user can 'select’ information
from YQL sources. A table can have many different bindings or ways of retrieving the data. However, we
advise that a single table produce a single type of result data.

/user

Attribute Value(s) Notes
xImn URL The XML Schema file related to this Open Data Table definition.
access |enumeration, any / app|The authorization level required to access.

any: Anonymous access; any user can access this table.

Yahoo! Developer Network

19 April 28, 2009

Using YQL Open Data Tables (BETA)

Attribute Value(s) Notes

app: 2-legged OAuth; involves authorization without access to private
user data.

user: 3-legged OAuth, involves authorization of access to user data.

For more information, refer to Open Data Tables Security and Access

Control [28].
https |boolean, true or|Iftrue, the table is only available if the user is connected via HTTPS.
fase If missing or false, either HTTP or HTTPS connections are acceptable.

Warning
If your table requires input that is deemed "private”, such as any passwords, authentication

keys, or other "secrets”, you MUST ensure the https attribute within the tables element is
set to true.

meta sub-element

Full Path: table/meta
Example:

<meta>
<author>Yahoo! Inc.</author>

<doaumentation R >http: /ZZAww_ Al idar.con/services/gpi/fl idar . photos .. search. hitmil</documentation RL>
<sampleQuery>select * from {table} where has_geo=""true" and text="san
francisco'</sampleQuery>

</meta>

Along with the tables element, you are required to include the meta sub-element, which provides the fol-
lowing information:

Attribute Description Notes

sampleQuery |A sample query that users can run|{table} should be used in place of the table
to get output from this table. name, so that the sample can run when used in
different namespaces. Multiple sampleQuery
elements may occur. Each sampleQuery may
have a description attribute that contains a
description about the sample.

documenta- |Additional information about this|More then one documentationURL element
tionURL table or the select called by the table| may be included for each table.
can be found here

description |Plaintextdescription about the table |A description of the table.

author Information regarding the author of|Examples of author information include an un-
this Web service formatted email, name, or other related informa-
tion.

Yahoo! Developer Network 20 April 28, 2009

Using YQL Open Data Tables (BETA)

select sub-element

Full Path: table/bindings/select
Example:

<bindings>
<select itemPath="rsp.photos.photo"” produces="XML">

</bindings>

Situated within each bindings element, the select sub-element describes the information needed for
YQL to call an API. Each different select sub-element within the bindings array can be considered to
be an alternative way for YQL to call a remote server to get the same type of structured data. Typically,
this is needed when the service supports different sets of query parameters (YQL's "keys™) or combination's
of optional query parameters.

Attribute Value(s) Notes

itemPath|URLs A dot-path that points to where the repeating data elements occur
in the response format. These are the "rows" of your table.

produces|enumeration, XML / JSON | The type of data coming back from the Web service.

maxAge |string Sets the max-age header on the request. Enables a faster return of
data while risking possibly stale content.

Note

L £
Unlike XML, JSON objects have no "root" node. To work with the dot notation, YQL creates
a "pseudo” root node for JSON responses called "json". If you need to return a sub-structure
from your Open Data Table that fetches or produces JSON, you'll need to add "json" at the
root of the path.

select/urls sub-element

Full Path: table/bindings/select/urls/urls

This is where YQL and the table supporting service come together. The url element describes the URL
that needs to be executed to get data for this table, given the keys in the key elements. While generally
there is only one url specified, if your service supports a "test” select and you'd like to expose it, you can
add an additional ur 1 elements for that environment.

Attribute Value(s) Notes
env enumeration (optional),|The YQL execution that this environment this URL
all/prod/test should be used in. If not supplied it defaults to al I .

Yahoo! Developer Network 21 April 28, 2009

Using YQL Open Data Tables (BETA)

Note

The CDATA/TEXT for this element contains the URL itself that utilizes substitution of values
at runtime based on the uri template specl. The names of the values will be substituted and
formatted according to the uri template spec, but the simplest method is simply to enclose a
key name with curly braces ({}):

o All {name}keys found in the URL will be replaced by the same id key value in the keys
elements.

* YQL currently supports both http and https protocols.
Example:

https://prod.gnipcentral .com/publishers/{publisher}/notifica-
tion/{bucket}.xml

YQL will look for key elements with the names publisher and bucket. If the YQL developer
does not provide those keys in the WHERE clause (and they are not optional), then YQL
detects the problem and will produce an error. If an optional variable is not provided, but is
part of the Open Data Table definition, it will be replaced with an empty string. Otherwise,
YQL will substitute the values directly into the URL before executing it.

select/execute sub-element

Full Path:table/bindings/select/execute

The execute sub-element allows you to invoke server-side JavaScript in place of a GET request. For more
information on executing JavaScript, refer to Executing JavaScript within Open Data Tables [31].

Example:

<execute>
<I[CDATAL
// Include the flickr signing library

y-include("'http://blog.pipes.yahoo.net/wp-content/uploads/flickr.js'™);
// GET the flickr result using a signed url
var fs = new FlickrSigner(api_key,secret);
response.object = y.rest(fs.createUrl({method:method,
format:""})).get().-response();
11>

</execute>

key sub-element

Full Path: table/bindings/select/inputs/key
Example:

<inputs>
<key id="publisher" type="'xs:string" paramType="path"

1 http://bitworking.org/projects/URI-Templates/spec/draft-gregorio-uritemplate-03.html

Yahoo! Developer Network 22 April 28, 2009

http://bitworking.org/projects/URI-Templates/spec/draft-gregorio-uritemplate-03.html
http://bitworking.org/projects/URI-Templates/spec/draft-gregorio-uritemplate-03.html

Using YQL Open Data Tables (BETA)

required=""true"™ />
<key i1d="bucket type="xs:string" paramType="path"
required=""true"™ />
<key i1d="Authorization™ type='xs:string"” paramType="header"
const=""true"” default="Basic eXFsSLXF1ZXN...BpcGvVz"™ />
</inputs>

Each key element represents a named "key" that needs to be provided the WHERE clause of the SELECT
statement. The values provided are then inserted into the URL request before its made to the server. In
general, these represent the query parameter that the service wants to expose to YQL.

Attribute

Value(s)

Notes

id

string

The name of the key. This represents what the user needs to provide in
the WHERE clause.

type

string

The type of data coming back from the Web service.

required

boolean

A boolean that answers the question: Is this key required to be provided
in the WHERE clause on the left-hand side of an equality statement? If
not set, any key is optional.

paramType

enumeration

Determines how this key is represented and passed on to the Web ser-
vice:

- query:Add the id and its value as a id=value query string parameter
to the URL.

- matrix: Add the id and its value as a id=value matrix parameter to
the URL path.

- header: Add the id and its value as a id: value header to the URL
request.

- path: Substitute all occurrences of {id} in the url string with the
value of the id. Not necessarily only in the path.

- variable: Use this key or field as a variable to be used within the
execute sub-element [31] instead of being used to format or form the
URL.

default

string

This value is used if one isn't specified by the developer in the SELECT.

private

boolean

Hide this key's value to the user (in both "desc" and "dia-
gnostics"). This is useful for parameters like appid and keys.

const

boolean

A boolean that Indicates whether the defau It attribute must be present
and cannot be changed by the end user. Constant keys are not shown
indesc [table].

batchable

boolean

A boolean which answers the question: Does this select and URL sup-
port multiple key fetches/requests in a single request (batched fetching)?

For more information about batching requests, refer to Batching Multiple
Calls in a Single Request [29].

maxBatchltems

integer

How many requests should be combined in a single batch call.

For more information about batching requests, refer to Batching Multiple
Calls in a Single Request [29].

Yahoo! Developer Network

23 April 28, 2009

Using YQL Open Data Tables (BETA)

select/paging sub-element

Full Path: table/bindings/select/paging

Example:

<paging model="page"''>
<start id="page" default="0" />
<pagesize id="'per_page'" max="250" />

<total

default=""10" />

</paging>

This element describes how YQL should "page" through the web service results, if they span multiple
pages, or the service supports offset and counts.

Attribute Value(s) Notes
model |enumeration, off-|The type of model to use to fetch more than the initial result set from
set/page the service. The offset refers to services that allow arbitrary index

offsets into the result set. Use the page value for services than
support distinct "pages™ of some number of results.

paging/pagesize sub-element

Full Path: table/bindings/select/paging/pagesize

This element contains Information about how the number of items per request can be specified.

Attribute| Value(s) Notes

max integer | The maximum size of the requested page. If the total requested is below the max
pagesize, then the pagesize will be the total requested. Otherwise, the max pagesize
will be the size of the page requested.

id string | The name of the parameter that controls this page size.

matrix |boolean |A boolean that answers the question: Is the parameter matrix style (part of the URI
path; delimited), or query parameter style?

paging/start sub-element

Full Path: table/bindings/select/paging/start

This element contains Information about how the "starting" item can be specified in the set of results.

Attribute

Value(s)

Notes

default

integer

The starting item number (generally 0 or 1); for paging style this value always de-
faults to 1.

id

string

The name of the parameter that controls the starting page/offset.

matrix

boolean

Answers the question: Is the parameter matrix style (part of the URI path; delimited),
or query parameter style?

Yahoo! Developer Network

24 April 28, 2009

Using YQL Open Data Tables (BETA)

paging/total sub-element

Full Path: table/bindings/select/paging/total

This element contains Information about the total number of results available per request by default.

Attribute|Valug(s) Notes

default|integer |The number of items that come back by "default” in YQL if the () syntax is not
used when querying the table.

Open Data Table Examples

This section includes a few examples of Open Data Tables that showcase the ability of YQL to gather data
from external APIs.

Tip

For a much larger list of publicly available Open Data Tables, refer to the Open Data Table
repository available on GitHub?.

 Flickr Photo Search [25]

» Access to Digg Events using Gnip [27]

o Twitter User Timeline [27]

Flickr Photo Search

This Open Data Table definition ties into the Flickr API and allows YQL to retrieve data from a Flickr
photo search:

<?xml version="1.0" encoding=""UTF-8"7?>
<table xmlns="http://query.yahooapis.com/vl/schema/table.xsd">
<meta> [20]

<author>Yahoo! Inc.</author>
<doaumentation R >http: /ZZAww_ Al idar.conv/services/api/f idar . photos . search. hitmlil</documentation URL>

<sampleQuery>select * from {table} where has geo=""true" and text="'san
francisco''</sampleQuery>
</meta> [20]
<bindings>
<select itemPath="rsp.photos.photo" produces=""XML">
<urls>
<url
env="allI">http://api . flickr.con/services/rest/?method=Fl ickr . photos.search</url>

</urls>
<paging model="page''>
<start id="page" default="0" />

2 hitp://github.com/spullara/yql-tables/tree/master

Yahoo! Developer Network 25 April 28, 2009

http://github.com/spullara/yql-tables/tree/master
http://github.com/spullara/yql-tables/tree/master
http://github.com/spullara/yql-tables/tree/master

Using YQL Open Data Tables (BETA)

<pagesize id="per_page" max="250" />
<total default="10" />

</paging>
<inputs>
<key i1d="woe_1id" type="'xs:string" paramType='‘query" />
<key i1d="user_i1d" type="xs:string" paramType='query" />
<key i1d="tags" type=''xs:string" paramType="query" />
<key i1d=""tag_mode™ type='xs:string"” paramType="query' />
<key i1d="text" type="xs:string" paramType='query" />
<key i1d="min_upload_date™™ type="'xs:string' paramType="query"
/>
<key i1d="max_upload_date™ type='xs:string' paramType="query"
/>
<key i1d="min_taken_date' type="'xs:string" paramType='query" />
<key i1d="max_taken_date' type="'xs:string" paramType='‘query" />
<key i1d="license" type="'xs:string" paramType="query"” />
<key i1d="privacy Ffilter" type="xs:string" paramType='query" />
<key i1d="bbox" type=''xs:string” paramType='query" />
<key id="accuracy” type='xs:string"” paramType="query' />
<key id="safe_search' type="'xs:string"” paramType="‘query" />
<key i1d="content_type'" type=''xs:string" paramType='query" />
<key i1d="machine_tags"™ type=''xs:string” paramType='query" />
<key i1d="machine_tag mode™ type='xs:string” paramType="‘query"
/>
<key id=""group_id" type='xs:string"” paramType="query' />
<key id="contacts™ type='xs:string"” paramType="query' />
<key i1d="place_id" type='xs:string"” paramType="query' />
<key i1d="media"™ type="xs:string' paramType="query' />
<key i1d=""has_geo™ type=''xs:string" paramType='query" />
<key i1d="lat" type="'xs:string"” paramType='‘query" />
<key i1d="lon" type="'xs:string"” paramType='‘query" />
<key i1d="radius' type="'xs:string"” paramType='query" />
<key i1d="radius_units"™ type=''xs:string” paramType='query" />
<key i1d="extras' type="'xs:string"” paramType='query" />
<key i1d="api_key" type="xs:string' const="true' private=""true"
paramType="query' default=""45c53f8...d5F645"/>
</inputs>
</select>
</bindings>
</table>

Run this sample in the YOL console®

P Tip

To get a better understanding of how bindings work within YQL Open Data Tables, compare
the Open Data Table definition above to photo.search on the Flickr API.

3

http://developer.yahoo.com/ygl/console/?g=select%20*%20from%20flickr.pho-

tos.search%20where%20has_geo%3D%22true%22%20and%20text%3D%22san%20francisco%22&env=http%3A%2F%2Fgithub.com%2Fspul-
lara%2Fyql-tables%2Fraw%2Fef685688d649a7514ebd27722366b2918d966573%2Falltables.env

4 hitp://www.flickr.com/services/api/flickr.photos.search.html

Yahoo! Developer Network

26 April 28, 2009

http://developer.yahoo.com/yql/console/?q=select%20*%20from%20flickr.photos.search%20where%20has_geo%3D%22true%22%20and%20text%3D%22san%20francisco%22&env=http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2Fef685688d649a7514ebd27722366b2918d966573%2Falltables.env
http://www.flickr.com/services/api/flickr.photos.search.html
http://developer.yahoo.com/yql/console/?q=select%20*%20from%20flickr.photos.search%20where%20has_geo%3D%22true%22%20and%20text%3D%22san%20francisco%22&env=http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2Fef685688d649a7514ebd27722366b2918d966573%2Falltables.env
http://developer.yahoo.com/yql/console/?q=select%20*%20from%20flickr.photos.search%20where%20has_geo%3D%22true%22%20and%20text%3D%22san%20francisco%22&env=http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2Fef685688d649a7514ebd27722366b2918d966573%2Falltables.env
http://developer.yahoo.com/yql/console/?q=select%20*%20from%20flickr.photos.search%20where%20has_geo%3D%22true%22%20and%20text%3D%22san%20francisco%22&env=http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2Fef685688d649a7514ebd27722366b2918d966573%2Falltables.env
http://www.flickr.com/services/api/flickr.photos.search.html

Using YQL Open Data Tables (BETA)

Digg Events via Gnip

The following example ties into the Gnip API? to retrieve activities from a Publisher, which in this case
is digg.

<?xml version="1.0" encoding="UTF-8"7?>
<table xmlns="http://query.yahooapis.com/v1l/schema/table.xsd">
<meta>
<sampleQuery>select * from {table} where publisher="digg" and
action="dugg®"</sampleQuery>
</meta>
<bindings>
<select itemPath="activities.activity" produces="XML" >
<urls>
<url

env="al I"'>hittps: //prod .gnipcentral .con/publ ishers/{publ isher }/notification/{bucket} >anl</url>

</urls>
<inputs>
<key id=""publisher" type="'xs:string" paramType="path"
required=""true" />
<key id="bucket" type="'xs:string'" paramType="‘path"
required=""true" />
<key id="Authorization”™ type=''Xxs:string" paramType="header"
const=""true" default="Basic eXFsLXF1ZXN...BpcGvz" />
</inputs>
</select>
<select itemPath=""activities.activity" produces="XML" useProxy="true"
auth="cal lback">
<urls>
<url
env="all" >https://prod.gnipcentral .con/publ ishers/{publ isher }/notification/current xml</url>

</urls>
<inputs>
<key id="publisher" type="'xs:string" paramType="path"
required=""true" />
<key id="Authorization”™ type=''Xs:string" paramType="header"
const=""true" default="Basic eXFsLXF1ZXNOa...BpcGVz" />
</inputs>
</select>
</bindings>
</table>

Run the above example in the YQL console®

Twitter User Timeline

The following example pulls in the last 20 tweets for a particular Twitter user using the Twitter AP1Z:

5 http://docs.google.com/View?docid=dgkhvp8s_5svzn35fw#Examples_of_Activities

8 _http://developer.yahoo.com/ygl/console/2g=select%20*%20from%20gnip.activity%20where%20publisher%3D%27digg%27%20and%20ac-
tion%3D%27dugg%27

T http://apiwiki.twitter.com/REST+API+Documentation#statuses/usertimeline

Yahoo! Developer Network 27 April 28, 2009

http://docs.google.com/View?docid=dgkhvp8s_5svzn35fw#Examples_of_Activities
http://developer.yahoo.com/yql/console/?q=select%20*%20from%20gnip.activity%20where%20publisher%3D%27digg%27%20and%20action%3D%27dugg%27
http://apiwiki.twitter.com/REST+API+Documentation#statuses/usertimeline
http://docs.google.com/View?docid=dgkhvp8s_5svzn35fw#Examples_of_Activities
http://developer.yahoo.com/yql/console/?q=select%20*%20from%20gnip.activity%20where%20publisher%3D%27digg%27%20and%20action%3D%27dugg%27
http://developer.yahoo.com/yql/console/?q=select%20*%20from%20gnip.activity%20where%20publisher%3D%27digg%27%20and%20action%3D%27dugg%27
http://apiwiki.twitter.com/REST+API+Documentation#statuses/usertimeline

Using YQL Open Data Tables (BETA)

<?xml version="1.0" encoding="UTF-8"7>
<table xmlns="http://query.yahooapis.com/vl/schema/table._xsd">
<meta>
<author>Paul Daniel</author>

<documentationUR>http://apiwiki - twitter . con/RESTHAPI+HDocumentatiordshowv</documentationURL>

</meta>
<bindings>
<select i1temPath="feed.entry' produces="XML">
<urls>
<url>http://twitter.com/statuses/user_timeline/{id}.atom</url>
</urls>
<paging model="page’>
<start default="0" i1d=""page'/>
<pagesize max=""200" id="‘count'/>
<total default="20"/>
</paging>
<inputs>
<key i1d="since"™ type='xs:string' paramType="query' />
<key i1d="since_id" type='xs:string"” paramType="query' />
<key 1d=""1d" type="'xs:string' paramType="path' required=""true"/>

</inputs>
</select>
</bindings>
</table>

Run this sample in the YOL console®

Open Data Tables Security and Access Control

The access attribute of the table element determines the type of authentication required to establish a
connection. In order for a user to connect to your table, the user must be authorized at the level or higher
than the level indicated in the access attribute. The following table lists whether access is available de-
pending on the value in the access attrribute.

Security of Table (access |Anonymous/NoAuthoriz-|2-legged OAuth | 3-legged OAuth / cookie
attribute) ation

any yes yes yes

app no yes yes

user no no yes

For more information about each level, refer to the access attribute in the table element [20].

8 http://developer.yahoo.com/ygl/console/?q=use%20%22http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-

tables%2Fraw%2F4832¢92¢38389e98f5ceef017f61d59a9e027664%2Ftwitter%2Ftwitter.user.timeline.xml%22%20as%20twittertable%3B%20se-
lect%20*%20from%20twittertable%20where%20id%3D%22spullara%22

Yahoo! Developer Network 28 April 28, 2009

http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2F4832c92c38389e98f5ceef017f61d59a9e027664%2Ftwitter%2Ftwitter.user.timeline.xml%22%20as%20twittertable%3B%20select%20*%20from%20twittertable%20where%20id%3D%22spullara%22
http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2F4832c92c38389e98f5ceef017f61d59a9e027664%2Ftwitter%2Ftwitter.user.timeline.xml%22%20as%20twittertable%3B%20select%20*%20from%20twittertable%20where%20id%3D%22spullara%22
http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2F4832c92c38389e98f5ceef017f61d59a9e027664%2Ftwitter%2Ftwitter.user.timeline.xml%22%20as%20twittertable%3B%20select%20*%20from%20twittertable%20where%20id%3D%22spullara%22
http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fgithub.com%2Fspullara%2Fyql-tables%2Fraw%2F4832c92c38389e98f5ceef017f61d59a9e027664%2Ftwitter%2Ftwitter.user.timeline.xml%22%20as%20twittertable%3B%20select%20*%20from%20twittertable%20where%20id%3D%22spullara%22

Using YQL Open Data Tables (BETA)

Batching Multiple Calls into a Single Request

YQL Open Data Tables support the ability to send a list of keys in a single request, batching up what would
otherwise be a multiple calls.

Note

In order to do batching in YQL Open Data Tables, the source must support it. An example
of a source that supports batching is the Yahoo! Social Directory call for profi Iesg)

Let's take the example of the Social Directory APl and see the URI for profile data:
http://social .yahooapis.com/v1l/user/{guid}/profile

In YQL, the table for retrieving this data is social . profi le. Here is an example that includes a sub-
select:

select * from social.profile where guid in (select guid from
social .connections where owner_guid = me)

When performing sub-selects, the inner sub-select returns a set of values, each of which is a call to the
URI above. So if a Yahoo! user has 3 connections in his profile, the sub-select makes three calls to the
Social Directory API:

http://social .yahooapis.com/v1l/user/1/profile
http://social .yahooapis.com/v1l/user/2/profile
http://social .yahooapis.com/v1/user/3/profile

Fortunately, the Social Directory URI above also supports batching, so a single call can be made to get all
three profiles:

http://social .yahooapis.com/v1l/users.guid(l1,2,3)/profile

Since the Social Directory API supports batching, YQL can enable this by defining the key guid as
batchable [22] with an extra parameter that denotes the max number of batch items per request:

<key id=""guid" type=''xs:string" paramType="path" batchable=""true"
maxBatchltems="'3"/>

We also need to modify the Open Table definition to support multiple values for the GUID. Combining
the modification to the Open Table definition above with the one below results in a batch call to the Social
Directory API for not more than 3 profiles:

<url
env="int"">http://socialstuff.con/v1l/users.guid({-listjoin], Jguid})/profile</url>

Troubleshooting

The following section deals with issues you may have while using YQL Open Data Tables:

* Problem: The SELECT URL doesn't parse correctly in my Open Data Table definition.

2 http://developer.yahoo.com/social/rest_api_guide/extended-profile-resource.html

Yahoo! Developer Network 29 April 28, 2009

http://developer.yahoo.com/social/rest_api_guide/extended-profile-resource.html
http://developer.yahoo.com/social/rest_api_guide/extended-profile-resource.html

Using YQL Open Data Tables (BETA)

Solution: Make sure you've escaped things correctly for XML, for example & should be encoded as
& -

e Problem: My Open Data Table definition has multiple bindings with different sets of keys. YQL keeps
running the "wrong" select. How can | get YQL to choose the right one?

Solution: Keep in mind that the order of bindings is important. Once YQL finds a select that satisfies
the YQL statement, it uses that one. Try moving the more "specific" select endpoint above the others.

* Problem: If my API requires authentication, how do | access it?

Solution: If you want to use an API that requires its own authentication mechanism, you use the ex-
ecute [31] sub-element within an Open Data Table to manage this authentication.

» Problem: Open Data Tables seem so complicated? What is the best way to get started?

Solution: The best way to avoid being overwhelmed is to first look at examples [25]. In general, when
creating YQL tables, it is useful to take a bottom-up approach and analyze the result structure of the
API(s) that you are encapsulating. First, group together all the services that produce the same result
structure. This becomes your "table™ or Open Table definition. For each API that produces the response
structure, you should create a "select” under the "request™ section of the Open Data Table definition. By
using this mechanism, you can often consolidate multiple API's into a single versatile YQL table that
allows YQL to do the heavy lifting and keep the implementation details hidden.

Yahoo! Developer Network 30 April 28, 2009

Chapter 6. Executing JavaScript in Open
Data Tables B5™

The following section is a documentation preview. It is meant to provide a preliminary glimpse of general features,
usage, and specifications. Details may be incomplete and are subject to change.

Introduction

Features and Benefits

The ability to execute JavaScript extends the functionality of Open Data Tables [18] in many ways, including
the following:

» Flexibility beyond the normal templating within Open Data Tables: Executing JavaScript allows
you to use conditional logic and to format data in a granular manner.

» Better data shaping and parsing: Using JavaScript, you can take requests and responses and format
or shape them in way that is suitable to be returned.

» Better support for calling external Web services: Some Web services use their own security and au-
thentication mechanisms. Some also require authentication headers to be set in the Web service request.
The execute element allows you to do both.

The ability to execute JavaScript is implemented through the execute sub-element within an Open Data
Table definition.

Within the execute sub-element, you can embed JavaScript and E4X (the shortened term for EcmaScript
for XML), which adds native XML support to JavaScript. Support for E4X was first introduced in JavaScript
1.6.

When a SELECT statement calls an Open Table Definition that contains the execute sub-element, YQL
no longer performs the GET request to the templated URI in the endpoint. Instead Y QL provides a runtime
environment in which the JavaScript is executed server-side. Your JavaScript in turn must then return data
as the output to the original SELECT statement.

Ensuring the Security of Private Information

As mentioned earlier, a important feature of Open Data Tables is the ability to accommodate third-party
security and authentication systems. As such, it is critical for developers to ensure an HTTPS connection
is required in any case where "secret" or "private" information is being provided.

If your table requires input that is deemed "private", such as any passwords, authentication keys, or other
"secrets", you MUST ensure the https attribute within the tables element is set to true.

When YQL detects the https attribute is set to true, the table will no longer be usable for connections to
the YQL console! or to the Web service API. To test and use tables securely, you should now use the
HTTPS endpoints:

1 hitp://developer.yahoo.com/ygl/console

Yahoo! Developer Network 31 April 28, 2009

http://developer.yahoo.com/yql/console
http://developer.yahoo.com/yql/console

Executing JavaScript in Open Data
Tables (BETA)

» Console: https://developer.yahoo.com/ygl/console

* Web Service API: https://query.yahooapis.com

Note

T
Connections made from the Open Data Table to the underlying Web services do not need
to be made over HTTPS. The same holds true for the actual server hosting the Open Data
Table definition.

For more information on the https attribute within Open Data Tables, refer to "tables element" section
within "Using Open Data Tables [19]".

JavaScript Objects and Methods Reference

As you add JavaScript within your execute sub-element, you can take advantage of the following
global objects:

Object Description
vy [32] Global object that provides access to additional language capabilities
request [33] |[RESTful object containing the URL on which YQL would normally perform a GET
request.
response [35] |Response object returned as part of the "results™ section of the YQL response

Let's discuss each of these three in detail.

y Global Object

The y global object contains methods firstly provide the basic of YQL functionality within JavaScript. It
also allows you to include YQL Open Data Tables and JavaScript from remote sources.

Method Description Returns

query(statement) |RunsaYQL statement Creates a resul t instance, or
returns an error

query(state - |Prepares and run a YQL statement. Execute |Creates a resul t instance, or
ment, hashmap) will replace all @name fields in the YQL |returns an error

statement with the values corresponding to
the name in the supplied hashtable

diagnostics Returns diagnostic information related to the | Returns diagnostic information
currently executed script

use(url ,namespace) |Imports an external Open Data Table defini-
tion into the current script at runtime

include(url) Include JavaScript located at a remote URL |Returns an evaluation of that
include
exit() Stops the execution of the current script -
rest(url) Sends a GET request to a remote URL end- |-
point

Yahoo! Developer Network 32 April 28, 2009

https://developer.yahoo.com/yql/console
https://query.yahooapis.com

Executing JavaScript in Open Data

Tables (BETA)
Method Description Returns
X path (o b - |Applies XPath to an E4X object Returns a new E4X object
ject,xpath)
xmlToJdson(object) |Converts an E4X/XML object into a JSON |JavaScript object
object
JjsonToXml(object) |Converts a JavaScript/JSON object into|E4X object
E4X/XML
log(message) Creates a log entry in diagnostics Returns the log entry within the
diagnostics output associated
with the current select state-
ment

y.rest method

The y.rest method allows you to make GET requests to remote Web services. It also allows you to
pass parameters and headers in your request.

Example:

var myRequest = y.rest("http://example.com™);
var data = myRequest.get().response;

Property Description Returns
url Provides a URL endpoint to query string
queryParams Gets the hashmap of query parameters object
matrixParams Gets the hashmap of matrix parameters object
headers Gets the hashmap of headers object
query(hashmap) Adds all the query parameters based on key-name hashmap |self
query(name,value) |Adds a single query parameter self
header (name,value) |Adds a header to the request self
matrix(name,value)|Adds a matrix parameter to the request self
path(pathsegment) |Appends a path segment to the URI self
getQ Performs a GET request to the URL endpoint response object

Tip

The y.rest method supports "chaining"”, which means that you can construct and run an
entire REST request by creating a "chain™ of methods. Here is a hypothetical example:

var myData = y.rest("http://blah.com™)
-path(*'one'™)
-path(*"two') .query(*a","b'™)
-header("'X-TEST", ""'value')
-get() .response;

When chained, the resulting request looks like this:

http://blah.com/one/two?a=b

Yahoo! Developer Network 33 April 28, 2009

Executing JavaScript in Open Data

Tables (BETA)
As you see above, along with your request you should also set your response through the following prop-
erties:
Property Description Returns

response |Get the response from the remote service. If the response content type |E4X object or string
is not application/json or text/xml then YQL provides a
string. If JSON or XML is specified, the E4X representation of the data

is returned.
headers |The headers returned from the response object
status |The HTTP status code string
Note

L EF

Because JSON does not have a "root" node in most cases, all JSON responses from a remote
Web service will be contained within a special jJson root object under response.res-
ults.

y.query method

Perhaps you want to use YQL queries while still using JavaScript within YQL. y.query allows you to
perform additional YQL queries within the execute sub-element.

Example:

var q = y-query("select * from html where
url="http://finance.yahoo.com/q?s=yhoo" and
xpath="//div[@id=\"yfi_headlines\"]/div[2]/ul/1i/a"");
var results = qg.results;

Property Description | Returns
results The results E4X object

diagnostics|The diagnostics|E4X object

Queries called from y.query return and execute instantly. However, data is only returned when the
results property is accessed. This feature allows you to make multiple, independent queries simultan-
eously that are then allowed to process before being returned together when the resul ts property is ac-
cessed.

Tip

The y .query method also accepts a hashed set of variables, useful for variable substitution
on a parametrized query. Here is an example that allows you to substitute the URL on Yahoo!
Finance:

var q = y.query(“select * from html where url=@url and
xpath="//div[@id=\"yfi_headlines\"]/div[2]/ul/li/a""
{url:"http://finance.yahoo.com/q?s=yhoo"});

var results = qg.results;

Yahoo! Developer Network 34 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

request Global Object

The request global object is essentially an instantiated y . rest instance with all values filled in.

response Global Object

The response global object allows you to determine how responses are handled.

Object Description

object|Contains the results of your execute script. Set this value to the data you'd like to return, either

as an E4X object, a JSON structure, or simply a string

JavaScript and E4X Best Practices for YQL

The following is a series of best practices related to using JavaScript and E4X within the execute sub-
element in YQL.:

Paging Results [35]

Including Useful JavaScript Libraries [36]

Using E4X within YQL [36]

Logging and Debugging [38]

Paging Results

YQL handles paging of returned data differently depending on how you control paging within an Open
Data Table definition. Let us consider the following example, followed be three paging element scenarios:

select * from table(10,100) where local.filter>4.0

No page element: If no paging element is provided, YQL assumes you want all data available to be
returned at once. Any "remote™ paging information provided on the select (10 being the offset and
100 being the count in our example), will be applied to all of the results before being processed by the
remainder of the where clause. In our example above, the first 10 items will be discarded and only
another 100 will be used, and execute will only be called once.

A paging element that only supportsa variable number of results: If a paging element is provided
that only supports a variable number of results (a single page with variable count), then the execute
sub-element will only be called once, with the total number of elements needed in the variable repres-
enting the count. The offset will always be 0. In our example, the count will be 110, and the offset 0.

A paging element that supportsboth offset and count: If a paging element is provided that supports
both offset and count, then the execute sub-element will be called for each "page" until it returns
fewer results than the paging size. In this case, lets assume the paging size is 10. The execute sub-
element will be called up to 10 times, and expected to return 10 items each time. If fewer results are re-
turned, paging will stop.

Yahoo! Developer Network 35 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

Note
LEF

In most cases, paging within the Open Data Table should match the paging capabilities of
the underlying data source that the table is using. However, if the execute sub-element
is adjusting the number of results coming back from a fully paging Web service or source,
then there is usually no way to unify the "offset" of the page as set up in the Open Data Table
with the destinations "offset". You may need to declare your Open Data Table as only sup-
porting a variable number of results in this situation.

Including Useful JavaScript Libraries

When writing your execute code, you may find the following JavaScript libraries useful:
OAuth:

y-include("’'http://oauth.googlecode.com/svn/code/javascript/oauth.js™);

y-include("'http://oauth.googlecode.com/svn/code/javascript/shal.js');
Flickr:

y-include("'http://blog.pipes.yahoo.net/wp-content/uploads/flickr.js'™);

MDS5, SHAL, Base64, and other Utility Functions’:

y.include("'http://v8cgi .googlecode.com/svn/trunk/lib/util.js™);

Using E4X within YQL

ECMAScript for XML (simply referred to as E4X) is a standard extension to JavaScript that provides
native XML support. Here are some benefits to using E4X versus other formats such as JSON:

 Preserves all of the information in an XML document, such as namespaces and interleaved text elements.
Since most web services return XML this is optimal.

* You can use E4X selectors and filters to find and extract parts of XML structure

» The engine on which YQL is created natively supports E4X, allowing E4X-based data manipulation to
be faster.

» Supports XML literals, namespaces, and qualified names.
To learn more about E4X, refer to these sources online:

« E4X Quickstart Guide® from WS02 Oxygen Tank

« Processing XML with E4X* from Mozilla

« AJAX and scripting Web service with E4X> by IBM

2 http://code.google.com/p/v8egi/wiki/AP1_Util

3 http://wso2.org/project/mashup/0.2/docs/edxquickstart.html

4 https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Processing_ XML _with_E4X
5 http:/Avww.ibm.com/developerworks/webservices/library/ws-ajax1/

Yahoo! Developer Network 36 April 28, 2009

http://code.google.com/p/v8cgi/wiki/API_Util
http://wso2.org/project/mashup/0.2/docs/e4xquickstart.html
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Processing_XML_with_E4X
http://www.ibm.com/developerworks/webservices/library/ws-ajax1/
http://code.google.com/p/v8cgi/wiki/API_Util
http://wso2.org/project/mashup/0.2/docs/e4xquickstart.html
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Processing_XML_with_E4X
http://www.ibm.com/developerworks/webservices/library/ws-ajax1/

Executing JavaScript in Open Data

Tables (BETA)

« Introducing E4X® by O'Reilly

« Popular E4X Bookmarks’ by delicious

E4X Techniques

In addition to the resources above, the following tables provides a quick list of tips related to using E4X.

E4X XML literals as well.

E4X Technique Notes Code Example
Creating XML literals - var x m 1 =
<root>hello</root>;
Substituting variables Use curly brackets {} to substitute[var x = "text'"; var y =
variables. You can use this for|<item>{x}</item>;

Adding sub-elementsto an
element

When adding sub-elements to an
element, include the root node for
the element.

item.node+=<subel></subel>;

You can add a sub-element to a
node in a manner similar to
adding sub-elements to an ele-
ment.

X.node += ;

This above code results in the following
structure:

<node></node>

If you try to add a sub-element to
a node without including the root
node, you will simply append the
element and create an XML list.

X += ;

The above code results in the following
structure:

<node><node>;

Assigning variably named
elements

Use substitution in order to create
an element from a variable.

var item <{name}/>;

Assigning a valueto an at-
tribute

item.@["id"]=path[0];

element

Getting all the elements|- var hs2 = el..*;
within a given element

Getting specific objects|- var hs2 = el..div
within an object anywhere

under a node

Getting the immediate H3|- h2 = el .h3;
children of an element

Getting an attribute of an|- h3 = el.h3[@id];

Getting elements with a
certain attribute

var alltnl5divs =
d..div.(@["1d"] =="tnl5con-

tent™);

Getting the " class" attrib-
ute

Use brackets to surround the

"class" attribute

className =t._@["class"];

8 hitp://www.xml.com/pub/a/2007/11/28/introducing-e4x.html

T hitp://delicious.com/popular/edx

Yahoo! Developer Network

37

April 28, 2009

http://www.xml.com/pub/a/2007/11/28/introducing-e4x.html
http://delicious.com/popular/e4x
http://www.xml.com/pub/a/2007/11/28/introducing-e4x.html
http://delicious.com/popular/e4x

Executing JavaScript in Open Data

Tables (BETA)
E4X Technique Notes Code Example
Getting aclassasastring |To get a class as a string, get its|var classString = class-
text object and the apply to-|Name.text().toString()
String.
Getting the name of anode|Use localName() to get the|var nodeName = e4xnode.loc-
name of a node alName(Q);

Note
£

When using E4X, note that you can use XML literals to insert XML "in-line," which means,
among other things, you do not need to use quotation marks:

var myXml = <foo />;
E4X and Namespaces

When working with E4X, you should know that E4X objects are namespace aware. This means that you
must specify the namespace before you work with E4X objects within that namespace. The folllowing
examples sets the default namespace:

default xml namespace ="http://www. inktomi.com/";

After you specify a default namespace, all new XML objects will inherit that namespace unless you specify
another namespace.

&~ Caution

If you do not specify the namespace, elements will seem to be unavailable within the object
as they reside in a different namespace.

Tip

To clear a namespace, simply specify a blank namespace:

default xml namespace ="";
Logging and Debugging
To get a better understanding of how your executions are behaving, you can log diagnostic and debugging
information using the y . log statement along with the y.getDiagnostics element to keep track of
things such as syntax errors or uncaught exceptions.
The following example logs "hello" along with a variable:
y.log("'hello™);

y.log(somevariable);

Using y - log allows you to get a "dump" of data as it stands so that you can ensure, for example, that the
right URLSs are being created or responses returned.

The output of y. log goes into the YQL diagnostics element when the table is used in a select.

Yahoo! Developer Network 38 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

You can also use the follow JavaScript to get the diagostics that have been created so far:

var e4xObject = y.getDiagnostics();

Examples of Open Data Tables with JavaScript

The following Open Data Tables provide a few examples of YQL's abilities:

» Hello World Table [39]

* Yahoo! Messenger Status [40]

* OAuth Signed Request to Netflix [41]

» Request for a Flickr "frob" [42]

» Celebrity Birthday Search using IMDB [43]

« Share Yahoo! Applications [47]

» CSS Selector for HTML [49]

Hello World Table

The following Open Data Table allows you to search a fictional table in which "a" is the path and "b" is
the term.

This table showcases the following:
* use of E4X to form the response

<?xml version="1.0" encoding=""UTF-8"7>
<table xmlns="http://query.yahooapis.com/v1l/schemas/table.xsd">
<meta>
<sampleQuery>select * from {table} where a="cat" and
b="dog" ;</sampleQuery>
</meta>
<bindings>
<select itemPath=""" produces="XML">
<urls>
<url>http://fake_url/{a}</url>
</urls>
<inputs>
<key id="a" type="xs:string" paramType="path® required="true"
/>
<key id="b" type="xs:string" paramType="variable® required=""true"
/>
</inputs>
<execute><![CDATA[
// Your javascript goes here. We will run it on our servers
response.object = <item>
<url>{request.url}</url>
<a>{a}
{b}

Yahoo! Developer Network 39 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

</item>;
11></execute>
</select>
</bindings>
</table>

Run this example in the YQL console®

Yahoo! Messenger Status

The following Open Data Table allows you to see the status of a Yahoo! Messenger user.
The table showcases the following:

« use of JavaScript to check Yahoo! Messenger status

* use of E4X to form the response

<?xml version="1.0" encoding=""UTF-8"7>
<table xmlns="http://query.yahooapis.com/vl/schema/table._xsd">
<meta>
<sampleQuery>select * from {table} where
u="tom_croucher_y" ;</sampleQuery>
</meta>
<bindings>
<select itemPath=""" produces="XML">
<urls>
<url>http://opi.yahoo.com/online?m=t</url>
</urls>
<inputs>
<key i1d="u" type="xs:string" paramType="query" required=""true"
/>
</inputs>
<execute><![CDATA[

//get plain text back from OPl endpoint
rawStatus = request.get() .response;

//check i1f users is not offline
if (IrawStatus.match(*NOT ONLINE™)) {

status = "online";
} else {
status = "offline";

}

//return results as XML using e4x
response.object =
<messengerstatus>
<yahoo_id>{u}</yahoo_id>
<status>{status}</status>
</messengerstatus>;
11></execute>

8 http://bit.ly/eAvgR

Yahoo! Developer Network 40 April 28, 2009

http://bit.ly/eAvgR
http://bit.ly/eAvgR

Executing JavaScript in Open Data
Tables (BETA)

</select>
</bindings>
</table>

Run this example in the YQL console®

OAuth Signed Request to Netflix

The following Open Data Table allows you to make a two-legged OAuth signed request to Netflix. It per-
forms a search on the Netflix catalog for specific titles'®.

This table showcases the following:
* access an authenticating API that requires signatures
* use an external JavaScript library

<?xml version="1.0" encoding=""UTF-8"7>
<table xmlns="http://query.yahooapis.com/v1l/schema/table_xsd"
https="true'>
<meta>
<author>Paul Donnelly</author>

<doaumentation R>http: //devel gpernetfl ix-con/docs/REST_AP1 Referencet0 52696</documentation R>

</meta>
<bindings>
<select i1temPath=""" produces="XML" >
<urls>
<url env="all”>http://api.netflix.com/catalog/titles/</url>

</urls>
<paging model="offset">
<start id="start _index' default="0" />
<pagesize id="max_results™ max="100" />
<total default="10" />
</paging>
<inputs>
<key id="term" type=''xs:string" paramType="query"
required=""true" />
<key i1d=""ck" type="'xs:string' paramType="‘variable"
required=""true" />
<key id=""cks' type=''xs:string'” paramType="‘variable"
required=""true" />
</inputs>
<execute><![CDATA[
// Include the OAuth libraries from oauth.net
y-include("'http://oauth.googlecode.com/svn/code/javascript/oauth.js™);
y-include("'http://oauth.googlecode.com/svn/code/javascript/shal.js');

< http://developer.yahoo.com/yqgl/console/?g=use%20%22ht-

tp%3A%2F%2FKid666.com%2Fyql%2Fymsg_opi.xml%22%20as%20ymsg.status%3B%20se-

lect%20*%20from%20ymsg.status%20where%20u%20%3D%20%22tom_croucher_y%22
10 http://developer.netflix.com/docs/REST_API_Reference#0_52696

Yahoo! Developer Network 41 April 28, 2009

http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fkid666.com%2Fyql%2Fymsg_opi.xml%22%20as%20ymsg.status%3B%20select%20*%20from%20ymsg.status%20where%20u%20%3D%20%22tom_croucher_y%22
http://developer.netflix.com/docs/REST_API_Reference#0_52696
http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fkid666.com%2Fyql%2Fymsg_opi.xml%22%20as%20ymsg.status%3B%20select%20*%20from%20ymsg.status%20where%20u%20%3D%20%22tom_croucher_y%22
http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fkid666.com%2Fyql%2Fymsg_opi.xml%22%20as%20ymsg.status%3B%20select%20*%20from%20ymsg.status%20where%20u%20%3D%20%22tom_croucher_y%22
http://developer.yahoo.com/yql/console/?q=use%20%22http%3A%2F%2Fkid666.com%2Fyql%2Fymsg_opi.xml%22%20as%20ymsg.status%3B%20select%20*%20from%20ymsg.status%20where%20u%20%3D%20%22tom_croucher_y%22
http://developer.netflix.com/docs/REST_API_Reference#0_52696

Executing JavaScript in Open Data
Tables (BETA)

// Collect all the parameters

var encodedurl = request.url;

var accessor = { consumerSecret: cks, tokenSecret: *""'};

var message = { action: encodedurl, method: "GET', parameters:
[['oauth_consumer_key™,ck], ["'oauth_version™,"1.0"]1};
OAuth.setTimestampAndNonce(message) ;

// Sign the request
OAuth.SignatureMethod.sign(message, accessor);

try {
// get the content from service along with the OAuth header, and

return the result back out

response.object =
request.contentType(“application/xml ") _header('Authorization™,
OAuth.getAuthorizationHeader("'netflix.com™,
message - parameters)) .get() .response;
} catch(err) {

response.object = {"result”:"failure®, “error": err};

}
11></execute>
</select>
</bindings>
</table>

Run this example in the YOL console!!

Request for a Flickr "frob"

The following Open Data Table example returns the frob, which is analogous to the request token in
OAuth.

This table showcases the following:

* access an authenticating API that requires signatures

* use an external JavaScript library

* sign a request, then send the request using y.rest

* require the HTTPS protocol (since private keys are being transmitted)

<?xml version="1.0" encoding="UTF-8" ?>
// https="true" ensures that only HTTPs connections are allowed
<table xmlns="http://query.yahooapis.com/vl/schema/table.xsd"
https="true'>
<meta>
<sampleQuery> select * from {table}</sampleQuery>
</meta>
<bindings>
<select itemPath="rsp" produces="XML">
<urls>

1 hitp://bit.ly/7yNup

Yahoo! Developer Network 42 April 28, 2009

http://bit.ly/7yNup
http://bit.ly/7yNup

Executing JavaScript in Open Data
Tables (BETA)

<url>http://api.flickr_com/services/rest/</url>
</urls>
<inputs>
<key i1d="method® type="xs:string" paramType="variable~
const=""true"” default="flickr.auth.getFrob" />
<key i1d="api_key" type="xs:string® paramType="variable-”
required=""true"™ />
<key i1d="secret® type="xs:string" paramType="variable~
required=""true"™ />
</inputs>
<execute><![CDATA[
// Include the flickr signing library
y-include("’http://www.yqglblog.-net/samples/flickr.js™);
// GET the flickr result using a signed url
var fs = new FlickrSigner(api_key,secret);
response.object = y._rest(fs.createUrl({method:method,
format:"""})).get()-response();
11></execute>
</select>
</bindings>
</table>

Run this example in the YQL console!?

Celebrity Birthday Search using IMDB

The following Open Data Table retrieves information about celebrities whose birthday is today by default,
or optionally on a specific date.

This table showcases the following:
 Creating an APl/table from HTML data

» Mixing and matching Web service requests with HTML scraping
» Using E4X for creating new objects, filtering, and searching

« Parallel dispatching of query/REST calls

» Handling page parameters

<?xml version="1.0" encoding="UTF-8" ?>
<table xmlns="http://query.yahooapis.com/v1l/schema/table._xsd">
<meta>
<sampleQuery> select * from {table}</sampleQuery>
</meta>
<bindings>
<select itemPath=""birthdays.person’” produces=""XML">
<urls>
<url></url>
</urls>
<paging model="offset">
<pagesize id="count" max="300" />

12 hitp://bit.ly/18j00M

Yahoo! Developer Network 43 April 28, 2009

http://bit.ly/18jOoM
http://bit.ly/18jOoM

Executing JavaScript in Open Data
Tables (BETA)

<total default="10" />
</paging>
<inputs>
<key i1d="date" type="xs:string" paramType="variable® />
</inputs>
<execute><![CDATA[

//object to query imdb to extract bio info for a person
var celeblnfo = function(name,url) {

this.url = url;

this.name = name;

var querystring = "select * from html where url = *"+url+
xpath=\"//div[@id="tn15"J\"""";

this.query = y.query(querystring);

and

}

//actually extract the iInfo and return an xml object
celeblnfo.prototype.getData=function() {
default xml namespace ="";
var d = this.query.results;
var img = d..div.(@["id"]=="tnl151hs") .div.a.img;
var content = d..div.(@["1d"] =="tnl5content™);
var bio = "";
//this 1s pretty hacky
for each (var node in content.p) {
iT (node.text()-toString()-trim().-length>100) {
bio = node.*;
break;
}
}
var anchors = content.a;
var bornInYear = null;
var bornWhere = null;
var diedInYear = null;
var onThisDay = [];
//T70D0 see if there is a wildcard way of pulling these out using
edx/xpath
for each (var a in anchors) {
var href = a.@["href~].toString(Q);
if (href.indexOf(*'/BornlnYear™)==0) {
borninYear = a.toString()-trimQ);
continue;

-\

T (href.indexOf("'/DiedInYear™)==0) {
diedInYear = a.toString()-trim(Q);
continue;

-\

T (href.indexOf(*"/BornWhere™)==0) {
bornWhere = a.toString(Q)-trim();
continue;

-\

T (href.indexOF(*"/0OnThisDay)==0) {
onThisDay.push(a.text()-toString(Q)-trim());
continue;

Yahoo! Developer Network 44 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

}
}

var bornDayMonth=null;
var diedDayMonth=null;
if (onThisDay.length>0) {
bornDayMonth =
onThisDay[0] -replace(/"\s*(\d{1,2P) [\s]+(\w+)\s*/,"$1 $2"); //tidy up
whitespace around text
if (diedlnYear && onThisDay.length>1) {
diedDayMonth=
onThisDay[1]-replace(/"\s*(\d{1,2P)[\s]+(\w+)\s*/,"$1 $2"); //tidy up
whitespace around text
}
}

var url = this.url;

var name = this.name;

var bornTime = null;

if (bornDayMonth) {
var daymonth = bornDayMonth._split(");
bornTime=new

Date(bomInYear ,Date . getVonthFromString(daymonth[L]) , parse Int(@aymorth[0])) - get Time()/1000;
}

var diedTime = null;

if (diedDayMonth) {
var daymonth = diedDayMonth._.split(" *);
diedTime=new

Date(diedInYear ,Date . getVonthFromString(daymonth[L]) , parse Int(@aymorth[0])) - get Time()/1000;
}

var person = <person url={url}><name>{name}</name>{img}<born
utime={bornTime}>{bornDayMonth} {bornlnYear}</born></person>;

if (diedTime) person.person+=<died utime={diedTime}>{diedDayMonth}
{diedInYear}</died>;

if (bio) person.persont+=<bio>{bio}</bio>;

return person;

}

//general useful routines
String.prototype.trim =function() {

return this.replace(/*[\s]*/,"").replace(/[\s]*%$/,"");
}

Date.getMonthFromString = function(month) {

return {"January®:0, “February®:1, *March®:2, “April~:3, "May~":4,
*June®:5, "July":6, “August®:7, "September®:8, “October~:9,
“November~®:10, “December*:11}[month];
}
Date.prototype.getMonthName = function() {

return [“January®, "February®, “March®, “April®, "May®, “June-,
*July®, "August®, "September®, “October®, “November-,
"December -] [this.getMonth()];
}

//the main object that uses boss to get the list (also gets peoples

Yahoo! Developer Network 45 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

"death™ days too)
celebSearch = function(when,start,count) {

//search yahoo/boss using the current day and month only on bio pages

on 1mdb

var bornDayMonth = when.getDate()+" "+when.getMonthName();

var ud = Math.round(when.getTime()/1000);

var search = "site:www.imdb.com *"Date of birth"” *"+bornDayMonth+""
title:biography*

var query = *“select * from search.web(*+start+","+count+"™) where
query=""'+search+"""";

var celebs = y._query(query).results;

//go through each result and start to get the persons name and their
imdb info page out
var results = [];
default xml namespace ="http://www. inktomi.com/"; //make sure our
edx is in the right namespace. IMPORTANT
for each (var celeb in celebs.result) {
//discard any hits on the date of death that also match in our
yahoo search
//(this is going to hurt our paging)
1T (celeb["abstract].toString() - indexOf(*'Date of Birth.
*"+bornDayMonth)<0) continue;
var j = celeb_title.toString() - indexOf('-"); //use text up to
"dash™ from title for name
var name = celeb.title.toString()-substring(0,j)-trim();
//start parsing these entries by pulling from imdb directly
results._push(new celeblnfo(name,celeb.url));

}

//1oop through each imdb fetch result, and create the result object

default xml namespace = ;
var data = <birthdays utime={ud} date={when} />;
for each (var celeb in results) {

data.birthdays+=celeb.getData();
}

return data;

}

//run it for today if no date was provided
var when = new Date();
if (date && date.length>0) {
when = new Date(date); //TODO needs a well formed date including

year
}
response.object = new celebSearch(when,0,count);
11></execute>
</select>
</bindings>
</table>

Yahoo! Developer Network 46 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

Run this example in the YQL console®

Shared Yahoo! Applications

The following Open Data Table provides a list of Yahoo! Applications that you and your friends have in-
stalled, indicating whether each app is installed exclusively by you, your friends, or both.

This table showcases the following:

» complex E4X usage, including namespaces, filtering, searching, and creation
« authenticated calls to Yahoo! Social APIs using y.query

* setting a security level to user to force authenticated calls only

« optional variable that changes the function (searches on a specific friend)

« handling page parameters

<?xml version="1.0" encoding="UTF-8" ?>
<table xmlns="http://query.yahooapis.com/v1l/schema/table.xsd"
securitylLevel="user">
<meta>
<sampleQuery> select * from {table}</sampleQuery>
</meta>
<bindings>
<select itemPath="root.install.app"” produces="XML">
<urls>
<url></url>
</urls>
<inputs>
<key i1d="friendguid® type="xs:string" paramType="variable® />
</inputs>
<execute><![CDATA[
function createlnstal lElement(update, type) {
var bits = update.itemurl._toString(Q).split('/");
var appid = bits[bits.length-2].substring(l);//get the appid
from the install url
var title = update.title._.toString();
default xml namespace = "";
var el = <app who={type} id={appid}>{title}</app>;
default xml namespace =
"http:://social .yahooapis.com/v1l/updates/schema.rng”;
return el;
}

default xml namespace = "";
var root = <install/>;

//get my friends installs from updates
var friendapp_installs = null;
if (friendguid) {

3 hitp://bit.ly/fV16L

Yahoo! Developer Network 47 April 28, 2009

http://bit.ly/fV16L
http://bit.ly/fV16L

Executing JavaScript in Open Data
Tables (BETA)

//only do deltas to this friend
friendapp_installs = y_query(“select title, itemtxt, itemurl
from social .updates(1000) where guid=@guid and type="applnstall® |
unique(field=""1temtxt") " ,{guid:friendguid});
} else {
//all friends
friendapp_installs = y.query(“select title, i1temtxt, itemurl
from social .updates(1000) where guid in (select guid from
social .connections(0) where owner_guid=me) and type="applnstall™ |
unique(field=""1temtxt)");
}
//get my installs from updates
var myapp_installs = y_query(“select title, itemtxt, itemurl from
social .updates(1000) where guid=me and type="‘applnstall™ |
unique(field=""1temtxt)");
//we"re going to keep a collection for each variant of the diff
between my installs and my friend(s)
var myapp_installs = myapp_installs._results;
var friendapp_installs = friendapp_installs._results;
default xml namespace =
“http:://social .yahooapis.com/v1l/updates/schema.rng-;
for each (var myupdate in myapp_installs._update) {
y.log('myupdate *‘+myupdate.localName());
//use e4x to search for matching node iIn friendapp with the
same itemtxt (appid)
var matching =
friendapp_installs.update. (itemtxt==myupdate. itemtxt.toString());
if (matching.length()>0) {
//found, we both have it
root. instal l+=createlnstal lElement(myupdate, ""shared) ;
//y_log('Found *‘+myupdate.title+” in both™);
myupdate . @matched true;
matching.@matched true;
} else {
//not in my friends apps, so add it to me only list
//y_log('Found *+myupdate.title+” In mine only™);
root. instal l+=createlnstal IElement(myupdate, “"me™);
myupdate.@matched = true;

}

}

//anything left in the friends app list that doesnt have a "match"

attribute is not installed by me
for each (var friendupdate in
friendapp_installs_update. (@matched!=true)) {

//y_log('Found *"+friendupdate.title+" in my friends only™);
root. instal l+=createlnstal lElement(friendupdate,* friend);

}
//return the three sets of results
default xml namespace = "~;
response.object = <root>{root}</root>;
11></execute>
</select>
</bindings>
</table>

Yahoo! Developer Network 48 April 28, 2009

Executing JavaScript in Open Data
Tables (BETA)

Run this example in the YQL console'*

CSS Selector for HTML

The following Open Data Table allows you to filter HTML using CSS selectors.

This table showcases the following:
» importing external JavaScript utility functions
« calling a YQL query within execute

<?xml version="1.0" encoding="UTF-8" ?>
<table xmlns="http://query.yahooapis.com/vl/schema/table.xsd">
<meta>
<sampleQuery>select * from {table} where url="www.yahoo.com" and
css="#news a''</sampleQuery>
</meta>
<bindings>
<select itemPath=""" produces="XML">
<urls>
<url></url>
</urls>
<inputs>
<key id="url' type='"'xs:string"” paramType="'variable" required=""true"
/>
<key id="css" type=''xs:string'" paramType="'variable" />
</inputs>
<execute><![CDATA[
//include css to xpath convert function

y.include("'http://james.padolsey.com/scripts/javascript/css2xpath.js'™);

var query = null;
if (css) {
var xpath = CSS2XPATH(css);
y.log("'xpath "+xpath);
query = y.query(‘'select * from html where url=@url and
xpath=\""+xpath+"\"",{url:url});
} else {
query = y.query(‘'select * from html where url=@url",{url:url});
}

response.object = query.results;
11></execute>
</select>
</bindings>
</table>

Run this example in the YQL console!®

14
15

http://bit.ly/Uelug
http://bit.ly/IhF1b

Yahoo! Developer Network 49 April 28, 2009

http://bit.ly/UeIuq
http://bit.ly/IhF1b
http://bit.ly/UeIuq
http://bit.ly/IhF1b

Executing JavaScript in Open Data
Tables (BETA)

Execution Rate Limits

The following rate limits apply to executions within Open Data Tables:

Item Limit
Total Units of Execution 50 million
Total Time for Execution 30 seconds
Total Stack Depth 100 levels

Total Number of Concurrent YQL Queries |5 concurrent queries
Total Number of Objects created via new |1 million objects
Total Number of Elements per E4X Object |1 million elements per E4X object

What isa unit of execution?

A unit can be any usage of memory or instruction. For example if a specific operation is only used twice
within an execute script, that would sum up to 2 units:

f(units) = f(operationl) + f(operation2)

Note
— The total number of units allowed per operation can be lower than the maximum allowed if
the script contains other operations which count towards the total units.

The follow unit costs apply toward execution rate limits:

Unit Cost
y.-query(Q) 2000 units
Methods of the y global object (such as y . log() and|1000 units
y.rest())
String concatenation Length of the string being concatenated (1 unit
per character)
Operation of an object created via new 500 units per operation
Addition of an element 50 units

The following example calculates the number of units needed when adding two XML trees that each contain
10 elements:

(10 elements + 10 elements) * 50 unit cost per element = 1000 units.

Yahoo! Developer Network 50 April 28, 2009

	Yahoo! Query Language (YQL) Guide
	Table of Contents
	Chapter 1. Introducing YQL
	Introduction

	Chapter 2. YQL Language Overview
	YQL Language Overview
	Dot-style syntax

	Chapter 3. Using YQL Statements
	Public and Private YQL Tables
	Data Sets Available through YQL
	How YQL Treats Data
	Extending and Customizing YQL

	Basic SELECT and FROM Statements
	Handling One-to-Many Relationships

	Local and Remote Filtering
	Sub-Selects
	Paging and Limiting Table Size
	Local Control
	Remote Control
	Unbounded queries
	Social Data and Me
	Post-Query Filtering and Manipulation

	DESC Statement
	SHOW Statement

	Chapter 4. Running YQL Statements
	Options for Running YQL Statements
	YQL Query Parameters
	YQL Result Structure
	SELECT diagnostics element

	Output: XML to JSON Conversion
	Output: Error Reporting
	Trying YQL: The Testing Console
	YQL via PHP or Yahoo! Open Applications
	Yahoo! Open Application Javascript
	2-Legged OAuth
	From Other Languages and Environments
	Authorization and Access Control
	Accessing YQL Public Data
	Accessing YQL using 2-Legged OAuth
	3-Legged OAuth Access to YQL

	Chapter 5. Using YQL Open Data Tables (BETA)
	Overview of Open Data Tables
	Invoking an Open Data Table Definition within YQL
	Open Data Tables Reference
	tables element
	meta sub-element
	select sub-element
	select/urls sub-element
	select/execute sub-element
	key sub-element
	select/paging sub-element
	paging/pagesize sub-element
	paging/start sub-element
	paging/total sub-element

	Open Data Table Examples
	Flickr Photo Search
	Digg Events via Gnip
	Twitter User Timeline

	Open Data Tables Security and Access Control
	Batching Multiple Calls into a Single Request
	Troubleshooting

	Chapter 6. Executing JavaScript in Open Data Tables (BETA)
	Introduction
	Features and Benefits

	Ensuring the Security of Private Information
	JavaScript Objects and Methods Reference
	y Global Object
	y.rest method
	y.query method

	request Global Object
	response Global Object

	JavaScript and E4X Best Practices for YQL
	Paging Results
	Including Useful JavaScript Libraries
	Using E4X within YQL
	E4X Techniques
	E4X and Namespaces

	Logging and Debugging

	Examples of Open Data Tables with JavaScript
	Hello World Table
	Yahoo! Messenger Status
	OAuth Signed Request to Netflix
	Request for a Flickr "frob"
	Celebrity Birthday Search using IMDB
	Shared Yahoo! Applications
	CSS Selector for HTML

	Execution Rate Limits

