
Yahoo! Application Platform Developers
Guide

Yahoo! Application Platform Developers Guide

Abstract

This guide provides overview and conceptual information for the Yahoo! Application Platform. It is intended for
software developers who are familiar with technologies such as HTML, JavaScript, PHP, and web services.

Looking for more docs? See the Y!OS Documentation1 landing page.

For the latest information, see the Yahoo! Application Platform Release Notes2.

We welcome your feedback. Have a comment or question about this document? Let us know in the YDN Forum for
Y!OS Documentation3.

1 /yos
2 /yap/releasenotes/
3 http://developer.yahoo.net/forum/index.php?showforum=64

/yos
/yap/releasenotes/
http://developer.yahoo.net/forum/index.php?showforum=64
http://developer.yahoo.net/forum/index.php?showforum=64
/yos
/yap/releasenotes/
http://developer.yahoo.net/forum/index.php?showforum=64

Table of Contents
1. Overview of the Yahoo! Application Platform (YAP) ... 1

What is YAP? .. 1
How Do I Get Started? .. 1
Programming Models ... 1

Server-Side ... 1
Browser-Side OpenSocial JavaScript ... 2
Browser-Side Flash .. 3

Open Application Workflow .. 4
Encoding Requirements .. 5

2. Anatomy of an Open Application ... 6
Introduction .. 6
Small View ... 6
Canvas View ... 7
Chrome .. 10
Landing Page .. 10
My Applications .. 11
Notifications ... 12
Invitations .. 13
Updates .. 14
Future Application Elements .. 14

3. Yahoo! Markup Language .. 15
4. Caja Support .. 16

Introduction .. 16
What is Caja? .. 16
Caja Status for This Release ... 16
Why Do We Need Caja? .. 17
How Does Caja Work? .. 17

How Do I Debug My Application? .. 19
YML Alters Caja Line Numbers ... 19

What HTML Tags are Blacklisted? .. 19
What Works in Caja? .. 20
What are Caja's Limitations? .. 21

Server-Side vs. Client-Side Sanitization ... 21
HTML Limitations ... 21
CSS Limitations .. 22
JavaScript limitations .. 22
DOM Limitations ... 24

What Do These Messages Mean? .. 25
Compile-Time Errors .. 25
Runtime errors .. 26

5. OpenSocial Compatibility .. 27
Version of OpenSocial Supported by YAP ... 27
OpenSocial Features Supported by YAP ... 27

Activity .. 27
Messaging .. 28
Person and People .. 28
Supported DataRequest Fields .. 28
Using Environment.supportsField ... 29
Permissions .. 29
Gadget Core APIs .. 29

Differences Between the 0.7 and 0.8 JavaScript APIs .. 29

February 24, 2009iiiYahoo! Developer Network

Using opensocial.IdSpec ... 29
When NOT to Use opensocial.IdSpec .. 30
Retrieving Friends With NETWORK_DISTANCE ... 30
Activity Response Format .. 30

OpenSocial Code Samples ... 31
Activities Demo ... 31
Gifts Demo ... 31

A. Parameters Passed to an Open Application .. 32
B. YAP Developer Web Services ... 34

General Information ... 34
Authorization .. 34
Response Codes ... 34

setSmallView .. 34
Description ... 34
URI ... 34
Methods ... 34
Request Body .. 34

February 24, 2009ivYahoo! Developer Network

Yahoo! Application Platform De-
velopers Guide

List of Figures
1.1. Server-Side ... 2
1.2. Browser-Side JavaScript .. 3
1.3. Browser-Side Flash .. 4
1.4. Application Workflow ... 5
2.1. Anatomy of an Open Application details the composition of an app with its different Views,
states, and locations. ... 7
2.2. Example Small View .. 7
2.3. Example Canvas View .. 9
2.4. Chrome Screenshot .. 10
2.5. Landing Page Screenshot ... 10
2.6. My Applications Screenshot ... 11
2.7. Notifications Screenshot .. 12
2.8. Invitations Screenshot ... 13
2.9. Updates Screenshot .. 14

February 24, 2009vYahoo! Developer Network

List of Tables
A.1. Parameters Passed to an Open Application ... 32

February 24, 2009viYahoo! Developer Network

Chapter 1. Overview of the Yahoo!
Application Platform (YAP)
What is YAP?

The Yahoo! Application Platform (YAP) is the software and services that enable developers to build Web
applications that are available throughout Yahoo!-- the largest audience in the world. The Yahoo! Applic-
ation Platform has the following components:

• Development environment: A browser-based tool that enables software developers to quickly create,
preview, and publish Web applications.

• APIs and Web services: Programmatic access to OpenSocial functionality and popular Yahoo! Web
services.

• Distribution and discovery infrastructure - The built-in features for publishing applications on galleries
on Web pages such as Yahoo! Profiles. End users can discover applications by searching or browsing
within application galleries.

• Runtime and rendering environment: The backend servers and software that run applications and convert
the code into HTML.

How Do I Get Started?
To get started quickly with YAP, follow the step-by-step instructions at:

• Installing the PHP SDK for YSP1

• Creating an Open Application2

If you want to write a Flash application, see the following:

• Building Yahoo! Social Applications with Flash3

• Y!OS Flash ActionScript 3 API Reference4

Programming Models
YAP offers several programming models for the development of Open Applications [6]. The diagrams
that follow show a simplified view of the runtime components for each model.

Server-Side
In this model, the code for your Canvas view [7] is a Web application that is hosted by and runs on your
servers. You can write the code in the language of your choice, such as Python, Java, or PHP. To make it

1 ../../yos/tutorials/installing_php_sdk.html
2 ../../yos/tutorials/creating_open_app.html
3 ../../flash/yos/
4 ../../flash/yos/classreference/

February 24, 20091Yahoo! Developer Network

../../yos/tutorials/installing_php_sdk.html
../../yos/tutorials/creating_open_app.html
../../flash/yos/
../../flash/yos/classreference/
../../yos/tutorials/installing_php_sdk.html
../../yos/tutorials/creating_open_app.html
../../flash/yos/
../../flash/yos/classreference/

easier to perform authorization and access the YSP APIs, YAP provides the Social API PHP SDK5. At
runtime, the YAP engine proxies requests to your server, adding the additional information listed in Para-
meters Passed to an Open Application [32]. The Canvas view of your application can access this additional
information programmatically. For example, a Canvas view coded in PHP can access the user's GUID
from the $_REQUEST superglobal. YAP saves the Small view [6] code in a cache. To specify the default
Small view code, you enter the HTML and YML statements on the Application Definition tab of the Ap-
plication Editor. To personalize the Small view to each user, your application can call the setSmallView
method of the PHP SDK.

YAP takes several measures to protect the user's private data. When the application accesses data through
the Yahoo! Social Platform (YSP) API, OAuth verifies that the access is authorized. The YAP engine
sanitizes the HTML and processes the JavaScript with Caja [16] before sending the content back to the
browser.

Figure 1.1. Server-Side

Browser-Side OpenSocial JavaScript
Most OpenSocial applications are written in JavaScript, which runs on the browser. When a Canvas view
makes an OpenSocial io.dataRequest, the YAP engine retrieves the data by calling the corresponding
YSP API. For a io.makeRequest, the YAP engine fetches content from a third-party site, sanitizes the
HTML, and then sends the content back to the browser.

5 ../../social/sdk/index.html

February 24, 20092Yahoo! Developer Network

Overview of the Yahoo! Application
Platform (YAP)

../../social/sdk/index.html
../../social/sdk/index.html

Figure 1.2. Browser-Side JavaScript

Browser-Side Flash
With the ActionScript 3 Social APIs6, you can create Flash modules in a Canvas view. The Flash module
has access to the viewer's session information and can obtain social information by making calls to the
YSP APIs. To include a Flash Module in the Canvas view, insert a Yahoo! Markup Language7 (YML) tag
such as the following:

6 ../../flash/yos/
7 ../../yap/yml/

February 24, 20093Yahoo! Developer Network

Overview of the Yahoo! Application
Platform (YAP)

../../flash/yos/
../../yap/yml/
../../flash/yos/
../../yap/yml/

<yml:swf src="http://example.com/app.swf" width="780" height="1000"/>

Figure 1.3. Browser-Side Flash

Open Application Workflow
The following diagram shows the overall workflow for creating and deploying an Open Application [6]
on YAP. During this process, an Open Application progresses through the following stages:

• Development: In this stage, you design and code the Canvas [7] and Small [6] views of your applic-
ation. Within the Application Editor, you can check the views with the preview feature. Nobody else
can view or run the application. For step-by-step instructions on developing an Open Application and
running the Application Editor, see the tutorial, Creating an Open Application8. The tutorial also explains
how to "push live" and publish an application.

• Pushed Live: The application is runnable on YAP. To share the application with others, you can send
them the proxied URL. Typically, in this stage you are still testing the application with a select group
of users. The application does not appear in the Yahoo! Application Gallery.

• Published: The application has been published in the Yahoo! Application Gallery. To find your applic-
ation in the gallery, end users search by tag or browse through categories.

• Installed: An end user has installed the application in a landing page such as Yahoo! Profiles. The Small
view of the application appears in the landing page. From the Small view, the user can launch the Canvas
view.

8 ../../yos/tutorials/creating_open_app.html

February 24, 20094Yahoo! Developer Network

Overview of the Yahoo! Application
Platform (YAP)

../../yos/tutorials/creating_open_app.html
../../yos/tutorials/creating_open_app.html

• Running: The end user is running the Small or Canvas view of the application. At runtime, the YAP
engine renders the code that appears in the end user's browser. For more information on the runtime
process, see the section, Programming Models [1].

Note
The published, installed, and running stages are not available in v1.0 of YAP. However, you
can test the running of your application by previewing it in the Application Editor.

Figure 1.4. Application Workflow

Encoding Requirements
The character encoding for YAP is UTF-8 for both requests and responses. Invalid input will be rejected.

February 24, 20095Yahoo! Developer Network

Overview of the Yahoo! Application
Platform (YAP)

Chapter 2. Anatomy of an Open
Application
Introduction

An Open Application is a Web application that has been registered on the Yahoo! Development Network1

(YDN) and runs on the Yahoo! Application Platform (YAP). As seen by the end user, an Open Application
has multiple views, integration points, and components.

Figure 2.1. Anatomy of an Open Application details the composition of an app with
its different Views, states, and locations.

Click to see a larger image2 or PDF3 of this figure.

Small View
The Small view of an application appears to end users as a module contained within a Web page. As the
application's teaser, the purpose of the Small view is to draw end users into the Canvas view [7], which
provides a richer interaction.

The content of the Small view is up to you, but usually a Small view contains information such as the fol-
lowing:

• One or more triggers to launch the Canvas view.

1 http://developer.yahoo.com
2 images/anatomy_big.png
3 images/anatomy_big.pdf

February 24, 20096Yahoo! Developer Network

http://developer.yahoo.com
images/anatomy_big.png
images/anatomy_big.pdf
http://developer.yahoo.com
images/anatomy_big.png
images/anatomy_big.pdf

• A representation of the user, such as a name and an image. Your application can get this information
from the user's Yahoo! Profile.

• Status or updates about other end users that will encourage the user running the Small view to open the
Canvas view.

A Small view has two states:

• Default: To define the code for the default state, in the Application Editor, enter HTML or YML in the
Small View Default Content field. Other markup or programming languages are ignored. This code is
stored on a server within YAP and is the same for all end users. At runtime, YAP renders the Small
view's default code if the personalized state for the end user is not available.

• Personalized: To personalize the Small view, an application calls the setSmallView method of the YSP
PHP SDK. This method enables you to tailor the Small view for each end user (identified by GUID)
and to dynamically update the Small view. You can use this method wherever you can run the YSP PHP
SDK, for example, in the Canvas view and back-end processes.

Small views have the following constraints:

• The size of a Small view depends on its host Web page, but typically the size is 300 px wide by 250 px
high (with fluid height).

• Unlike the Canvas view, advertisements and promotions cannot be served in a Small view.

• In the Small view, the code is restricted to HTML or YML4. You cannot specify JavaScript, PHP, or
other languages for the Small view.

Figure 2.2. Example Small View

Canvas View
The Canvas view is the application's largest and richest interface for the end user. Usually, the Canvas
view is rendered within a Yahoo! landing page, surrounded by a Yahoo! header, footer, and an advertisement
unit. End users access a Canvas view from a variety of locations: the Small view, links for user updates,

4 http://developer.yahoo.com/yap/yml/

February 24, 20097Yahoo! Developer Network

Anatomy of an Open Application

http://developer.yahoo.com/yap/yml/
http://developer.yahoo.com/yap/yml/

email links, and Web links. Unlike the Small view, the Canvas view supports third-party advertisements
and promotions. The size of a Canvas view is 760 px wide with an infinite height.

The application code for the Canvas view is hosted on a server outside of YAP. To specify the code's loc-
ation, in the Application Editor, enter the URL in the Application URL field.

The Canvas view code can be HTML, YML, CSS, and the subset of JavaScript allowed by Caja. This code
can be generated by a variety of languages, such as PHP, XML/XSLT, and Ruby on Rails.

To protect the private information of end users, YAP applies the following security mechanisms to the
Canvas view:

• The Canvas view is presented within an iframe.

• HTML is sanitized to remove unsafe code.

• JavaScript is translated by Caja.

You should design the Canvas view so that it has the following two states:

• Uninstalled: The end user is visiting your application but has not installed it. In this state, the end user
has not logged into Yahoo!, so his or her identity (GUID) is unknown to the application. In this state,
the Canvas view should encourage the end user to install the application.

• Personalized: The end user has installed your application, his or her identity is known, and the full
functionality of the Canvas view is available.

February 24, 20098Yahoo! Developer Network

Anatomy of an Open Application

Figure 2.3. Example Canvas View

Chrome
The chrome provides a visual boundary to an Open Application. As shown by the following screenshot,
the chrome's menu enables the end user to manage the application.

February 24, 20099Yahoo! Developer Network

Anatomy of an Open Application

Figure 2.4. Chrome Screenshot

Landing Page
The Landing Page is the default location where an Open Application's Canvas view is presented. End users
can access the Landing Page via a static URL, such as http://apps.yahoo.com/-appID. On a Landing Page,
the Canvas view is enclosed by Yahoo!'s standard header, footer, and an advertisement unit (160 px wide
by 600 px high).

Figure 2.5. Landing Page Screenshot

February 24, 200910Yahoo! Developer Network

Anatomy of an Open Application

My Applications
My Applications lists all Open Applications installed by an end user. When an application is installed, it
is added to My Applications regardless of where the installation took place. In My Applications, every
application is represented by its icon and name. Clicking on an application sends the end user to the applic-
ation's Landing Page, displaying the Canvas view of the App. My Applications can be accessed at ht-
tp://apps.yahoo.com/myapps, and will be promoted around the Yahoo! network in future releases.

Figure 2.6. My Applications Screenshot

Notifications
Notification is a mechanism enabling end users to send messages to each others through Open Applications.
When an end user performs an action that triggers this mechanism, he or she is asked to select the recipients
of the action. The message must be approved by the sending user before it can be sent. A person who receives
this message may opt out of receiving further Notifications from the Open Application that sent it.

February 24, 200911Yahoo! Developer Network

Anatomy of an Open Application

Figure 2.7. Notifications Screenshot

Invitations
An invitation is a Notification that explicitly requests the recipient to install an Open Application. An In-
vitation must be initiated by an end user who has installed the Open Application, and can only be sent to
the sending user's Connections (a mutually-confirmed relationships).

February 24, 200912Yahoo! Developer Network

Anatomy of an Open Application

Figure 2.8. Invitations Screenshot

Updates
Updates are Yahoo!'s user event stream. When an end user installs an Open Application, the Application
may be granted rights to read from and write to the user's Updates.

February 24, 200913Yahoo! Developer Network

Anatomy of an Open Application

Figure 2.9. Updates Screenshot

Future Application Elements
This release is primarily intended for application developers. As such, it does not include all the elements
needed for full distribution of your application on the Yahoo! Network. In a future release, the following
elements will be available:

• Applications Gallery: The place where end users discover your applications by searching for keywords
or browsing pre-defined categories.

• Network Integration: End users will be able to install Open Application views on the Yahoo! Network.

February 24, 200914Yahoo! Developer Network

Anatomy of an Open Application

Chapter 3.Yahoo! Markup Language
See the Yahoo! Markup Language Reference1.

1 ../../yap/yml/

February 24, 200915Yahoo! Developer Network

../../yap/yml/
../../yap/yml/

Chapter 4. Caja Support
Introduction

What is Caja?
Caja is a system that transforms ordinary HTML and JavaScript into a restricted form of JavaScript. The
transformation is called "cajoling", and the result is "cajoled script". Caja is an Open Source project
sponsored by Google and hosted at Google Code1.

The cajoled script is then run within a security sandbox created in your browser. This provides a way to
safely include arbitrary third-party content on any Web page.

In principle, Caja should be transparent. Most JavaScript behaves the same whether it's run directly or ca-
joled. However, since Caja is currently incomplete and rapidly evolving, there are many noticeable differ-
ences.

Caja Status for This Release
Since Caja is used to transform an application's HTML and JavaScript into a restricted form that prevents
malicious applications from doing damage, applications cannot contain arbitrary ActiveX objects, use
eval to get around the ActiveX restriction, or use iframes to get around the eval restriction.

Other than that, most JavaScript application elements should work. Our goal is to make Caja as unobtrusive
as possible for ordinary applications. However, we're not there yet. Caja still has many rough edges, and
you may experience mysterious Caja behavior. This document will describe some of those mysteries in
detail.

To get started right away, use Firefox with the Firebug2 add-on and set alert to bring up the Firebug
console. Other browsers are not currently supported.

Note the following restrictions that apply to this release:

• Complex libraries such as YUI, jQuery, and Prototype are not yet supported.

• The document.write method isn't supported. However, innerHTML and many commonly-used
DOM interfaces are currently supported.

• Global variables that are not defined with var will cause compile-time and run-time errors.

• If something doesn't work, check your Firebug console, even if the Firebug icon doesn't indicate any
errors. There are several common runtime errors that don't raise exceptions. Instead, they show up as
plain messages in the console like this:

Not readable: ([SomeClass]).foo

Messages of this type usually means you're trying to do something that isn't yet supported, and you need
to find an alternative .

1 http://code.google.com/p/google-caja/
2 http://getfirebug.com/

February 24, 200916Yahoo! Developer Network

http://code.google.com/p/google-caja/
http://getfirebug.com/
http://code.google.com/p/google-caja/
http://getfirebug.com/

• Caja currently restricts obj.prototype and constructors in a way that blocks some common JavaScript
idioms, such as monkey-patching.

Why Do We Need Caja?
When a website wants to include arbitrary third-party content, it needs to consider many potential security
problems. One of the harder problems is "drive-by downloads": an attacker inserts malicious HTML that
tries to install malware when you view the page.

A typical vector is an <iframe src=...> tag pointing at the attacker's website. Your browser automat-
ically loads the iframe, which runs a script that figures out what browser and extensions you have, then
downloads malware targeted specifically at the vulnerabilities known for your system.

The traditional solution to this problem is to aggressively sanitize third-party content by removing iframes,
removing scripts, etc. That works well in many cases, but aggressive sanitization makes it difficult to create
interesting applications.

Today, we want to allow anybody to create interesting applications that can appear on our site, but we also
want to limits our users' exposure to scripts that install malware.

Sanitizing JavaScript is difficult, and that's what Caja is about.

How Does Caja Work?
Caja has two main parts:

• server-side translator

• client-side runtime support

The Server-Side Translator

The Caja translator rewrites arbitrary HTML and JavaScript into safe HTML and JavaScript, using white
list security principles, by

• Removing anything it doesn't understand

• Removing HTML and CSS that isn't on a white list

• Modifying CSS rules, limiting them to a sandbox <div>

• Transforming JavaScript into forms known to be safe

The JavaScript transformation is the complicated part. It's basically a form of virtualization:

• Replaces references to global variables with references to a sandbox-specific IMPORTS___ object

• Rewrites references to this to prevent access to the real global scope

• Replaces most JavaScript code with semantically similar code that has runtime checks for security

• Rejects some JavaScript code early, such as with(obj){...}.

Here's an example transformation. This JavaScript source code:

February 24, 200917Yahoo! Developer Network

Caja Support

 function f(a, b) {
 a.j = b.k(G);
 }

is cajoled into something like this:

 var G = ___.readImport(IMPORTS___, 'G');
 var f = ___.simpleFunc(function (a, b) {
 var x0___;
 var x1___;
 var x2___;
 var x3___;
 x3___ = b,
 x2___ = c,
 x1___ = ___.callPub(x3___, 'k', [x2___], 0);
 x0___ = a,
 ___.setPub(x0___, 'j', x1___, 1);
 }, 'f');

Note

The actual Caja transformation is slightly different. This example has been modified a bit to
make it easier to see what Caja is doing under the hood.

The main purpose of the transformation is to guarantee that cajoled script can't access arbitrary global
variables. Cajoled script can only use objects and functions that are explicitly given to it by the container.
Basically, cajoled script conforms to an object-capability security model.

For more details about the JavaScript transformation, see the Caja project page.

(As of 9/2008, the Caja project is in the process of migrating to a new rewriting scheme called "Valija".
The description in the Caja paper is accurate for the current Caja generation, but it's going to be wrong
when Valija takes over.)

The client-side runtime

Cajoled script can't access any real global objects without help, and that's what the Caja runtime system
is for. The runtime system creates a useful sandbox environment by adding objects to an IMPORTS___
object that's given to the cajoled script.

Some of the imported objects are the real thing. For example, IMPORTS___.Array is identical to the
browser's Array.

Some of the imported objects are proxies. For example, IMPORTS___.document is a proxy object that
exposes a safe subset of the DOM interface. The proxy function document.getElementById will
return objects that are also proxies. Basically, you never get direct access to a real DOM object, but that
generally doesn't matter, because for most purposes the proxy objects are similar enough to the real thing.

The runtime system also enforces the Caja security model, by checking that objects and functions were
properly tagged before they're used. You can see Caja's internal tagging when you examine objects in
Firebug. Most objects will have properties that end with triple-underbar, such as length_canRead___,
___FROZEN___, etc.

February 24, 200918Yahoo! Developer Network

Caja Support

How Do I Debug My Application?
Your best bet at the moment is to work in Firefox with Firebug. Caja's runtime library will send errors and
diagnostics to Firebug's console.

First, if you're getting weird error messages, check if they're explained here.

Most LINT and WARNING messages are harmless and can be ignored. However, there's one WARNING
that's important:

WARNING: failed to load external url ...

The reason that's important: External scripts are not loaded currently, but Caja doesn't flag that as a fatal
error. If you see that warning for a <script> tag, then your application probably won't work. Fix that
problem first. Either inline the external script, or modify your code to eliminate the external dependency.

alert works, but the messages are redirected to Firebug's console.

Always check your Firebug console, even if the Firebug icon doesn't show any errors. Some of Caja's
runtime errors will print an error message without throwing or re-throwing an exception, so Firebug never
sees the error and doesn't update the error count.

Caja's JavaScript transformation makes it difficult to interpret stack traces in Firebug. To compensate, Caja
has a debugging mode, which we've enabled automatically. If your application throws an exception, Caja's
runtime will try to print a meaningful backtrace in Firebug's console.

YML Alters Caja Line Numbers
The line numbers in Caja's error messages are line numbers that Caja sees, which is not necessarily the
same as the line numbers in your source code. In particular, YML transformation happens before Caja, so
if you use any YML tags, the line numbers reported by Caja might be offset by an arbitrary amount.

At the moment, there isn't an easy way to determine the original line number.

For compile-time errors, Caja will print the source line text for each error, and hopefully that's enough to
identify the actual location.

For run-time errors, you can sometimes figure out the real location by looking at the JavaScript that Caja
generates.

What HTML Tags are Blacklisted?
Caja does not allow the following HTML tags:

<applet>
<base>
<basefont>
<embed>
<frame>
<frameset>
<iframe>

February 24, 200919Yahoo! Developer Network

Caja Support

<isindex>
<meta>
<noframes>
<noscript>
<object>
<param>
<title>

What Works in Caja?
This is a brief overview of what's expected to work in Caja currently.

Browsers Supported Firefox 3 works well, and Caja debugging is somewhat tailored for Firebug.

IE 7 works, but it's a litlle flaky. In particular, <input> elements have
several problems.

Safari 3 works, but it doesn't get exercised much, so there might be some
odd corners.

Opera 9 probably works, but it doesn't get exercised at all.

HTML and CSS Caja supports most of the HTML 4.01 and CSS 2.1 specs, as well as some
common browser extensions. At the moment Caja tends to adhere more
closely to the specs than browsers do, so it will warn or reject some things
that are nonstandard but safe and supported by the major browsers.

YML All YML tags should work with Caja, though some might run into issues
with the flaky IE support.

DOM manipulation Caja provides proxied access to the DOM. If you look under the hood, you
can see that you're actually manipulating instances of TameDocument,
TameNode, etc.

Many of the common DOM operations work, such as document.getEle-
mentById, document.createElement, node.firstchild, etc.
However, there are still large chunks missing in the DOM implementation.

Note that document.write is deliberately not supported, as explained
below. Setting and getting innerHTML is supported.

Events and Timers Most event handlers work. You can attach handlers with HTML onevent=
attributes, or with the DOM addEventListener method, or by assigning
to the node.onevent property.

Note: node.onevent='...' will not work. The value must be a function.

window.setTimeout and window.setInterval both work.

Note: event.fromElement is IE specific and is not supported by Caja.
Instead, use event.target or event.relatedTarget, depending
on the event type.

February 24, 200920Yahoo! Developer Network

Caja Support

OpenSocial 0.8 Most of our OpenSocial 0.8 support is explicitly whitelisted for use in Caja.
We're not supporting OpenSocial 0.7. If you get runtime "Not readable" errors
related to OpenSocial objects, check if you're using an OpenSocial 0.7 inter-
face that disappeared in 0.8.

What are Caja's Limitations?
This describes various things that don't work in Caja, along with some workarounds. Some of these are
deliberately not supported, some are accidentally not supported.

This description is specific to our Caja instance. Caja has a flexible configuration, so you might not see
exactly the same behavior elsewhere.

Server-Side vs. Client-Side Sanitization
Caja has two similar but distinct HTML sanitization processes.

Server-side sanitization is the full cajoler transformation applied to your application. Server-side sanitization
supports complex features like scripts and stylesheets.

Client-side sanitization happens when you set innerHTML in your application. Client-side sanitization
is more restrictive, and will silently strip out scripts and stylesheets.

HTML Limitations
 We allow target=_blank and target=_top. Other values are

deleted with a warning. Omitting target is the same as tar-
get=_top.

<embed> For Flash, use <yml:swf> instead. Other embeds are not supported.

<head> All contents of the head element are stripped. Use plain HTML starting
from inside the body.

<iframe> Not supported yet. Workaround depends on what you're trying to do.

<link rel=stylesheet> External stylesheets are not supported yet. Workaround is to inline the
stylesheet.

<object> For Flash, use <yml:swf> instead. Other embeds are not supported.

<script> Inline scripts are supported by the server-side cajoler, but they're stripped
by the client-side sanitizer. Workaround depends on what you're trying
to do.

<script src=...> External scripts are not supported yet. Workaround is to inline the script.

<style> Stylesheets are supported by the server-side cajoler, but they're stripped
by the client-side sanitizer. Workaround depends on what you're trying
to do.

javascript:void(0) Caja currently rejects any javascript: URLs.

February 24, 200921Yahoo! Developer Network

Caja Support

If you're trying to use javascript:void(0) to make <a> buttons,
try using an onclick handler instead, something like this:

<a href="#" onclick="click(); return
false">click

Radio Buttons Radion buttons do not work in Internet Explorer. There is no work
around, but this should be fixed soon.

URL policy We currently allow http, https, and mailto URLs. Relative URLs
are not allowed.

This policy applies to any use of URLs, such as <a>, , etc.

CSS Limitations
[] selectors Not supported. Workaround is to use the class attribute to mark the nodes you want,

then select on that class.

expression() Not supported. Workaround depends on what you're trying to do.

@import Not supported yet. Workaround is to inline the stylesheet.

JavaScript limitations
eval() Not supported yet. Workaround depends on what you're trying to

do.

new Function() Not supported. This is similar to eval. Workaround depends on
what you're trying to do.

Assigning strings as event handlers Code like this is not supported:

 node.onclick = '...';

That's an implicit eval, and has the same problem as explicit eval.

Instead, put your event-handling code in a function, and assign the
function to the event handler:

 function handle_click() { ... }
 node.onclick = handle_click;

Names ending with underscore You can't use names ending with triple-underscore. Those are re-
served for Caja's internal bookkeeping.

You can't use names ending with double-underscore. Those are re-
served for browser extensions.

You can use names ending with single-underscore, but Caja adds
some restrictions. Properties ending with single-underscore are class-

February 24, 200922Yahoo! Developer Network

Caja Support

private, and they can only be accessed via this. Basically,
this.x_ is OK, but foo.x_ is either a compile-time error or a
run-time error.

with (obj) { ... } This is not allowed since the dynamic behavior of with makes it
difficult to analyze its security implications. The workaround is to
remove the with statement and write obj.foo instead of just
foo.

Assignment to implicit global vari-
ables

Caja rejects this at compile-time:

 <script>
 window = 3;
 </script>

The error message looks like this:

FATAL_ERROR: ...: Cannot assign to a free
module variable:

Less obviously, this is the same compile-time error:

 <script>
 function a() { foo = 3; }
 </script>

This is because foo isn't declared anywhere.

Caja treats any undeclared variable as a name imported from the
container, and it considers those bindings to be read-only.

The fix is to always declare your variables with var, in either a
local or global scope.

Calling a method as a function If obj.foo is a method that refers to this, then peeling it off as
a function and calling it directly will cause a runtime error:

 <script>
 var get = document.getElementById;
 get('x'); // fails
 </script>

That doesn't really work in raw JavaScript either, but under Caja
the error message is much more cryptic. In the Firebug console,
you'll see something like this:

 Method function (id) {
 id += idSuffix;
 var node =
this.doc___.getElementById(id);
 return tameNode(node, this.editable___);

February 24, 200923Yahoo! Developer Network

Caja Support

 } is already attached.
 this: [object Window]
 self: [Fake Document]
 ...
 {}["\nError: " + str] is not a function

The reason is, JavaScript doesn't have bound methods, so that code
probably doesn't do what you want. The code is saying to call
getElementById with this bound to the global object, which
is window. So if it succeeded, getElementById would get
this=window, instead of this=document.

The usual way of capturing a method as a function is to wrap the
method call in a function:

 <script>
 var get = function(el) { return
document.getElementById(el); };
 get('x'); // works
 </script>

And that should work with or without Caja.

select.length select.length is not readable.

DOM Limitations
Many of the holes in the DOM interface are currently due to missing implementation, not due to any par-
ticular security concern. In general, if the function or property you're trying to use isn't supported yet, you
might be able to do the same thing using interfaces that are already supported.

document.write() Not supported yet. document.write can install malware, and it's difficult
to make a safe version that duplicates the way it handles partial HTML frag-
ments.

Instead, use innerHTML:

 <div id="x"></div>
 <script>
 var x = document.getElementById('x');
 x.innerHTML = 'abc';
 </script>

You can also build up a DOM tree in pieces using document.createEle-
ment and so forth.

window.event window.event isn't supported yet. This problem shows up if you have
event-handling code like this:

 click
 <script>

February 24, 200924Yahoo! Developer Network

Caja Support

 function click() { alert(window.event); }
 </script>

When you click on the text, you'll see messages like this in the Firebug console:

 Dispatch click event thisNode=<a onclick="return
plugin_dispatchEvent___(this, event || window.event,
 0, 'c_1___')">, event=click clientX=22, clientY=93,
 pluginId=0, handler="c_1___"
 Not readable: ([TameWindow]).event
 undefined

The workaround is to pass in the event as an argument. Caja always binds
event within onevent= handlers, so you can rewrite the example this way:

 click
 <script>
 function click(event) { alert(event); }
 </script>

Another workaround is to use addEventListener instead, but there's a
bug in that. See below.

node.parentNode() node.parentNode does not work until the Node has been added to the
DOM. The workaround is to add the element to the DOM before trying to ac-
cess the parentNode.

node.attributes() node.attributes is not readable. Use getAttribute/setAttrib-
ute instead.

What Do These Messages Mean?

Compile-Time Errors
Compile-time errors show up as messages at the end of your application preview, and look something like
this:

 stdin:72: </html>
 ^^
 LINT: stdin:72+8 - 73+1: Non-space character in page trailer.

Most LINT and WARNING messages are harmless and can be ignored, but pay attention to any "failed to
load external url" warnings.

Here are some of the common errors:

FATAL_ERROR: ...: Cannot
 assign to a free module
 variable: ...

You need to declare your global variables with var before you use
them. See Assignment to implicit global variables [23].

February 24, 200925Yahoo! Developer Network

Caja Support

WARNING: ...: failed to
load external url ...

External scripts and stylesheets are currently not supported. Note,
failure to load a script is not a fatal error, so Caja will keep pro-
cessing your application, and it will probably fail on some issue
that's a side effect of the load failure. One common effect is "Cannot
assign to a free module variable". Error messages like that are mis-
leading in this case. The real problem is the load failure.

Inline the external content to get around this.

ERROR: ...: css property

Caja is currently pretty strict about color names in CSS rules. Only
the 16 standard color names are recognized. Use hexadecimal colors
to get around this. color has bad value:

==>...<==

LINT: Stray 'html' start
 tag.

These are basically harmless irregularities that are caused by Caja's
too-strict parser. You might get a lot of these if your HTML uses
DOS CR-LF line endings. It's safe to ignore these errorsLINT: 'body' start tag

found but the 'body'
element is already open.
LINT: Non-space character
 after body.
LINT: Non-space character
 in page trailer.

Runtime errors
Runtime errors usually show up as plain messages in the Firebug console. Sometimes a runtime error will
raise an exception that Firebug will catch and report as an error, but these exceptions are often unrelated
to the actual error.

Here are some of the common messages:

{}["\nError: " + str] is
 not a function

This shows up as an error in the Firebug console, but the actual error
is something else. This is Caja attempting to throw an uncatchable
exception after it has detected a problem. The actual problem is
probably a plain message earlier in the console.

Not readable:
([Object]).foo

This shows up in the Firebug console when a script tries to access
a nonexistent property or a nonexistent global variable. It isn't a
fatal error. The operation will return undefined, and the script
will continue, but an unexpected undefined can trigger other er-
rors.

Not readable:
([Object]).foo

This shows up in the Firebug console when a script tries to access
a property of a nonexistent object.

You might get this error if you try to access browser interfaces that
aren't supported yet, such as navigator.appName.

obj is undefined
 function canRead(obj,
name) { return !!obj[name
 + '_canRead___']; }

February 24, 200926Yahoo! Developer Network

Caja Support

Chapter 5. OpenSocial Compatibility
Version of OpenSocial Supported by YAP

YAP v1.0 supports the 0.8 version of the OpenSocial JavaScript APIs. However, YAP v1.0 does not support
the OpenSocial RESTful API or Gadget XML definitions. (Support for these features will be added in a
future release.) In your Yahoo! Open Application, the code for your Canvas view can include calls to the
OpenSocial JavaScript APIs. (The Small view does not support JavaScript.) For the Canvas view, YAP
filters all JavaScript code with Caja [16].

Yahoo! Inc. is a charter member of the OpenSocial Foundation. We are committed to supporting
OpenSocial and are working with the foundation on defining future specifications such as OSML and
OpenSocial templates.

This chapter covers OpenSocial support for YAP, but does not discuss OpenSocial in general. For more
information on OpenSocial, see the following documentation:

• OpenSocial 0.8 JavaScript API Reference1

• OpenSocial 0.8 Gadgets Core API Reference2

OpenSocial Features Supported by YAP

Activity

Supported Activity Fields

YAP supports opensocial.CreateActivityPriority.LOW for requestCreateActivity
but does not support opensocial.CreateActivityPriority.HIGH. Requests for HIGH are
treated the same as LOW.

Because OpenSocial 0.8 does not specify ActivityRequestFields, offsets and limits (using "first"
and "max") are not supported.

YAP supports the following Activity fields:

• opensocial.Activity.Field.ID

• opensocial.Activity.Field.TITLE

• opensocial.Activity.Field.BODY

• opensocial.Activity.Field.URL

• opensocial.Activity.Field.USER_ID

• opensocial.Activity.Field.POSTED_TIME

1 http://www.opensocial.org/Technical-Resources/opensocial-spec-v08/opensocial-reference08
2 http://www.opensocial.org/Technical-Resources/opensocial-spec-v08/gadgets-reference08

February 24, 200927Yahoo! Developer Network

http://www.opensocial.org/Technical-Resources/opensocial-spec-v08/opensocial-reference08
http://www.opensocial.org/Technical-Resources/opensocial-spec-v08/gadgets-reference08
http://www.opensocial.org/Technical-Resources/opensocial-spec-v08/opensocial-reference08
http://www.opensocial.org/Technical-Resources/opensocial-spec-v08/gadgets-reference08

Application Data

YAP supports up to 1,024 bytes of data per key and up to 1 MB per application.

Messaging
YAP does not support requestSendMessage and requestShareApp.

Person and People

Supported Person Fields

The following fields are in every response:

• opensocial.Person.Field.ID

• opensocial.Person.Field.NAME

• opensocial.Person.Field.THUMBNAIL_URL

If the information for the following fields is in the Yahoo! Social Directory, then they are in the response:

• opensocial.Name.UNSTRUCTURED

• opensocial.Person.Field.PROFILE_URL

• opensocial.Person.Field.ADDRESSES

• opensocial.Address.UNSTRUCTURED_ADDRESS

• opensocial.Person.Field.AGE

• opensocial.Person.Field.GENDER

• opensocial.Person.Field.TIME_ZONE (This field is not available when fetching friends.)

Supported PeopleRequest Fields

YAP supports only the following PeopleRequest fields:

• opensocial.DataRequest.PeopleRequestFields.FIRST

• opensocial.DataRequest.PeopleRequestFields.MAX

YAP does not support other PeopleRequest fields, including FILTER, PROFILE_DETAILS, and
SORT_ORDER.YAP behaves as if these fields are set to ALL.

Supported DataRequest Fields
YAP supports only the ESCAPE_TYPE DataRequest field. All requests behave as if ESCAPE_TYPE
is set to NONE.

February 24, 200928Yahoo! Developer Network

OpenSocial Compatibility

Using Environment.supportsField
The Environment.supportsField method returns true if the specified field is supported by the
OpenSocial container. The method does not check to see if the field value exists for a given user.

A user might not provide information such as age, gender, and time zone. If this information is not provided,
it is not returned in the response.

The supportsField method is useful for checking if the container stores data for a certain field, for
example, location. If the container does not support location, then the application must store the location
data. If the container does support location, but location is undefined, then the application can prompt the
user to update location in the container's preferences.

Permissions
If your Yahoo! Open Application makes OpenSocial calls, on the Permissions tab of the Application Editor,
specify Read (or Read/Write) for the following data:

• Yahoo! Profiles

• Yahoo! Updates

Gadget Core APIs
YAP supports the Gadget Core APIs, except for Prefs, Views, and the Feature-SpecificAPI.

Differences Between the 0.7 and 0.8 JavaScript
APIs

This section describes some of the important differences between versions 0.7 and 0.8 of the OpenSocial
JavaScript APIs. For more information, see the OpenSocial Release Notes for v0.83.

Using opensocial.IdSpec
When making some data requests, such as Activity,People, and newFetchPersonAppDataRe-
quest, you must use an IdSpec object instead of specifying opensocial.IdSpec.PersonId
by itself.

Change the following 0.7 code:

var req = opensocial.newDataRequest();
req.add(req.newFetchPeopleRequest(opensocial.IdSpec.PersonId.VIEWER),
'viewer');

To the following 0.8 code:

var idSpec = opensocial.newIdSpec();

3 http://www.opensocial.org/Technical-Resources/opensocial-release-notes

February 24, 200929Yahoo! Developer Network

OpenSocial Compatibility

http://www.opensocial.org/Technical-Resources/opensocial-release-notes
http://www.opensocial.org/Technical-Resources/opensocial-release-notes

 idSpec.setField(opensocial.IdSpec.Field.USER_ID,
opensocial.IdSpec.PersonId.VIEWER);
var req = opensocial.newDataRequest();
req.add(req.newFetchPeopleRequest(idSpec), 'viewer');

When NOT to Use opensocial.IdSpec
The newFetchPersonRequest method requires a string ID as the first argument, not an openso-
cial.IdSpec object. The newUpdatePersonAppDataRequest and newRemovePersonApp-
DataRequest methods have the same requirement. Specifying opensocial.IdSpec as the first ar-
gument results in an error. Therefore, code such as the following is correct and does not need to be changed
for 0.8:

var req = opensocial.newDataRequest();
req.add(req.newFetchPersonRequest(opensocial.IdSpec.PersonId.VIEWER),
'viewer');

Retrieving Friends With NETWORK_DISTANCE
Because DataRequest.Group has been removed from 0.8, VIEWER_FRIENDS and OWNER_FRIENDS
are no longer available. Therefore, in 0.8 you must use IdSpec.Field.NETWORK_DISTANCE instead
of DataRequest.Group.

Change the following 0.7 code:

var req = opensocial.newDataRequest();
req.add(req.newFetchPeopleRequest(opensocial.DataRequest.Group.VIEWER_FRIENDS),
 'viewerFriends');

To the following 0.8 code:

var idSpec = opensocial.newIdSpec();
idSpec.setField(opensocial.IdSpec.Field.NETWORK_DISTANCE, 1); // Greater
 than 1 is not supported.
idSpec.setField(opensocial.IdSpec.Field.USER_ID,
opensocial.IdSpec.PersonId.VIEWER);
// Specifying a GROUP_ID is unnecessary and is not supported. Our
container assumes you always want friends.
 var req = opensocial.newDataRequest();
 req.add(req.newFetchPeopleRequest(idSpec), 'viewerFriends');

Activity Response Format
In 0.7, Activity request responses are wrapped in an object with the activities property set to the
actual response. However, 0.8 does not have this wrapper and the response is returned directly.

Change the following 0.7 code:

February 24, 200930Yahoo! Developer Network

OpenSocial Compatibility

var activities = response.get('myActivityKey').getData()['activities'];

To the following 0.8 code:

var activities = response.get('myActivityKey').getData();

OpenSocial Code Samples
The following code samples demonstrate how you might make OpenSocial calls in the Canvas view of a
Yahoo! Open Application.

Activities Demo

<xi:include></xi:include>

The JavaScript code for the previous listing is also available on a separate page: Activities Demo4.

Gifts Demo

<xi:include></xi:include>

The JavaScript code for the previous listing is also available on a separate page: Gifts Demo5.

4 examples/activities_demo.txt
5 examples/gifts.txt

February 24, 200931Yahoo! Developer Network

OpenSocial Compatibility

examples/activities_demo.txt
examples/gifts.txt
examples/activities_demo.txt
examples/gifts.txt

Appendix A. Parameters Passed to an
Open Application

The following tables describe the parameters passed by the YAP engine to an Open Application at runtime.

Table A.1. Parameters Passed to an Open Application

DescriptionVariableFormatSourceInformation

User Information

GUID of the person logged into
Yahoo! in the browser

yap_viewer_guidPOSTCookie in the ses-
sion

Viewer Information

GUID of the person whose
identity information is in the
profile

yap_owner_guidPOSTOwner of the pro-
file

Owner Information

Language priority list as
defined in RFC 2616 section

Accept-LanguageHEADERPublisherPage Language Re-
quested

14.4, with quality values as-
signed so as to maintain the
priority order of the list
provided by the publisher.

Timezone Identifier, e.g.,
"Asia/Seoul".

yap_tzPOSTPublisherPage Timezone

ISO 31661 country code identi-
fying the country whose rules

yap_jurisdictionPOSTPublisherPage Jurisdiction

should be used for content
moderation.

Session Information

OAuth 1.1 Access Tokeny a p _ v i e w e r _ a c -
cess_token

POSTRegistration and
YAP

Viewer's Access
Token

OAuth 1.1 Token Secrety a p _ v i e w e r _ a c -
cess_token_secret

POSTRegistration and
YAP

Viewer's Access
Token Secret

Application IDyap_appidPOSTYAPAppID

yap_dropzone_idPOSTPublisherDropzone

The URL where the application
is hosted.

yap_page_urlPOSTPublisherHosting Page URL

YAP Authentication

OAuth 1.0 Consumer Keyyap_consumer_keyPOSTYAP EngineConsumer Key

Timestamp of the request as per
RFC 33392

yap_timePOSTYAP EngineRequest Time

HMAC_SHA1 signature meth-
od

o a u t h _ s i g n a -
ture_method

POSTYAP EngineRequest Signature
Method

OAuth 1.0 Signatureoauth_signaturePOSTYAP EngineRequest Signature

1 http://en.wikipedia.org/wiki/ISO_3166
2 http://www.apps.ietf.org/rfc/rfc3339.html

February 24, 200932Yahoo! Developer Network

http://en.wikipedia.org/wiki/ISO_3166
http://www.apps.ietf.org/rfc/rfc3339.html
http://en.wikipedia.org/wiki/ISO_3166
http://www.apps.ietf.org/rfc/rfc3339.html

Browser Information

H T -
TP_USER_AGENT

HEADERBrowserUser Agent

HTTP_ACCEPTHEADERBrowserAccept

HTTP_ACCEPT_EN-
CODING

HEADERBrowserAccept Encoding

Viewer Information

The request is targeted to either
the Small View or Canvas
View.

yap_viewPOSTPublisherView

February 24, 200933Yahoo! Developer Network

Parameters Passed to an Open Applica-
tion

Appendix B.YAP Developer Web
Services
General Information

This document lists the REST web services for development on the Yahoo! Application Platform (YAP).
The next two sections contain information that is common to all YAP developer web services.

Authorization
The calls to the web services must use OAuth 1.1, with 2-legged authorization that matches the consumer
key. Only HMAC-SHA1 signatures are supported.

Response Codes

DescriptionResponse Body ContentsResponse Code

OKNo content200

OAuth failureNo content400, 401

OAuth signature mismatchNo content403

Internal failureUnstructured body5xx

setSmallView

Description
Replaces the statically rendered small view for a single user.

URI
The {guid} string is the Global User ID (GUID) of the Yahoo! user whose small view is set.

http://appstore.apps.yahooapis.com/v1/cache/view/small/{guid}

Methods
• POST

• PUT

Request Body
YML or HTML for the small view contents. The content-type is ignored, but content encoding is honored.

February 24, 200934Yahoo! Developer Network

	Yahoo! Application Platform Developers Guide
	Table of Contents
	Chapter 1. Overview of the Yahoo! Application Platform (YAP)
	What is YAP?
	How Do I Get Started?
	Programming Models
	Server-Side
	Browser-Side OpenSocial JavaScript
	Browser-Side Flash

	Open Application Workflow
	Encoding Requirements

	Chapter 2. Anatomy of an Open Application
	Introduction
	Small View
	Canvas View
	Chrome
	Landing Page
	My Applications
	Notifications
	Invitations
	Updates
	Future Application Elements

	Chapter 3. Yahoo! Markup Language
	Chapter 4. Caja Support
	Introduction
	What is Caja?
	Caja Status for This Release
	Why Do We Need Caja?
	How Does Caja Work?
	The Server-Side Translator
	The client-side runtime

	How Do I Debug My Application?
	YML Alters Caja Line Numbers

	What HTML Tags are Blacklisted?
	What Works in Caja?
	What are Caja's Limitations?
	Server-Side vs. Client-Side Sanitization
	HTML Limitations
	CSS Limitations
	JavaScript limitations
	DOM Limitations

	What Do These Messages Mean?
	Compile-Time Errors
	Runtime errors

	Chapter 5. OpenSocial Compatibility
	Version of OpenSocial Supported by YAP
	OpenSocial Features Supported by YAP
	Activity
	Supported Activity Fields
	Application Data

	Messaging
	Person and People
	Supported Person Fields
	Supported PeopleRequest Fields

	Supported DataRequest Fields
	Using Environment.supportsField
	Permissions
	Gadget Core APIs

	Differences Between the 0.7 and 0.8 JavaScript APIs
	Using opensocial.IdSpec
	When NOT to Use opensocial.IdSpec
	Retrieving Friends With NETWORK_DISTANCE
	Activity Response Format

	OpenSocial Code Samples
	Activities Demo
	Gifts Demo

	Appendix A. Parameters Passed to an Open Application
	Appendix B. YAP Developer Web Services
	General Information
	Authorization
	Response Codes

	setSmallView
	Description
	URI
	Methods
	Request Body

